Christian Roumestand
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Roumestand.
Nature Biotechnology | 2003
Loïc Martin; François Stricher; Dorothée Missé; Francesca Sironi; Martine Pugnière; Philippe Barthe; R. Prado-Gotor; Isabelle Freulon; Xavier Magne; Christian Roumestand; André Ménez; Paolo Lusso; Francisco Veas; Claudio Vita
The conserved surfaces of the human immunodeficiency virus (HIV)-1 envelope involved in receptor binding represent potential targets for the development of entry inhibitors and neutralizing antibodies. Using structural information on a CD4-gp120-17b antibody complex, we have designed a 27-amino acid CD4 mimic, CD4M33, that presents optimal interactions with gp120 and binds to viral particles and diverse HIV-1 envelopes with CD4-like affinity. This mini-CD4 inhibits infection of both immortalized and primary cells by HIV-1, including primary patient isolates that are generally resistant to inhibition by soluble CD4. Furthermore, CD4M33 possesses functional properties of CD4, including the ability to unmask conserved neutralization epitopes of gp120 that are cryptic on the unbound glycoprotein. CD4M33 is a prototype of inhibitors of HIV-1 entry and, in complex with envelope proteins, a potential component of vaccine formulations, or a molecular target in phage display technology to develop broad-spectrum neutralizing antibodies.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Julien Roche; Jose A. Caro; Douglas R. Norberto; Philippe Barthe; Christian Roumestand; Jamie L. Schlessman; Angel E. Garcia; E Bertrand García-Moreno; Catherine A. Royer
It has been known for nearly 100 years that pressure unfolds proteins, yet the physical basis of this effect is not understood. Unfolding by pressure implies that the molar volume of the unfolded state of a protein is smaller than that of the folded state. This decrease in volume has been proposed to arise from differences between the density of bulk water and water associated with the protein, from pressure-dependent changes in the structure of bulk water, from the loss of internal cavities in the folded states of proteins, or from some combination of these three factors. Here, using 10 cavity-containing variants of staphylococcal nuclease, we demonstrate that pressure unfolds proteins primarily as a result of cavities that are present in the folded state and absent in the unfolded one. High-pressure NMR spectroscopy and simulations constrained by the NMR data were used to describe structural and energetic details of the folding landscape of staphylococcal nuclease that are usually inaccessible with existing experimental approaches using harsher denaturants. Besides solving a 100-year-old conundrum concerning the detailed structural origins of pressure unfolding of proteins, these studies illustrate the promise of pressure perturbation as a unique tool for examining the roles of packing, conformational fluctuations, and water penetration as determinants of solution properties of proteins, and for detecting folding intermediates and other structural details of protein-folding landscapes that are invisible to standard experimental approaches.
FEBS Letters | 1996
Matteo E. Mangoni; André Aumelas; Pierre Charnet; Christian Roumestand; Laurent Chiche; Ernest Despaux; Gérard Grassy; Bernard Calas; Alain Chavanieu
Protegrin 1 (PG‐1) is a naturally occurring cationic antimicrobial peptide that is 18 residues long, has an aminated carboxy terminus and contains two disulphide bridges. Here, we investigated the antimicrobial activity of PG‐1 and three linear analogues. Then, the membrane permeabilisation induced by these peptides was studied upon Xenopus laevis oocytes by electrophysiological methods. From the results obtained, we concluded that protegrin is able to form anion channels. Moreover, it seems clear that the presence of disulphide bridges is a prerequisite for the pore formation at the membrane level and not for the antimicrobial activity.
Nature Structural & Molecular Biology | 2005
Martin Cohen-Gonsaud; Philippe Barthe; Claire Bagnéris; Brian Henderson; John M. Ward; Christian Roumestand; Nicholas H. Keep
Resuscitation-promoting factor (RPF) proteins reactivate stationary-phase cultures of (G+C)-rich Gram-positive bacteria including the causative agent of tuberculosis, Mycobacterium tuberculosis. We report the solution structure of the RPF domain from M. tuberculosis Rv1009 (RpfB) solved by heteronuclear multidimensional NMR. Structural homology with various glycoside hydrolases suggested that RpfB cleaved oligosaccharides. Biochemical studies indicate that a conserved active site glutamate is important for resuscitation activity. These data, as well as the presence of a clear binding pocket for a large molecule, indicate that oligosaccharide cleavage is probably the signal for revival from dormancy.
Molecular and Cellular Biology | 2002
Gerald Künstle; Jarmo Laine; Gaëlle Pierron; Shin-ichiro Kagami; Hiroshi Nakajima; François Hoh; Christian Roumestand; Marc-Henri Stern; Masayuki Noguchi
ABSTRACT Serine/threonine kinase Akt/protein kinase B, the cellular homologue of the transforming viral oncogene v-Akt, plays a central role in the regulation of cell survival and proliferation. We have previously demonstrated that the proto-oncogene TCL1 is an Akt kinase coactivator. TCL1 binds to Akt and mediates the formation of oligomeric TCL1-Akt high-molecular-weight protein complexes in vivo. Within these protein complexes, Akt is preferentially phosphorylated and activated. The MTCP1/TCL1/TCL1b oncogene activation is the hallmark of human T-cell prolymphocytic leukemia (T-PLL), a form of adult leukemia. In the present study, using a PCR-generated random TCL1 library combined with a yeast two-hybrid screening detecting loss of interaction, we identified D16 and I74 as amino acid residues mediating the association of TCL1 with Akt. Based on molecular modeling, we determined that the βC-sheet of TCL1 is essential for TCL1 homodimerization. Studies with mammalian overexpression systems demonstrated that both Akt association and oligomerization domains of TCL1 are distinct functional domains. In vitro kinase assays and overexpression experiments in mammalian cells demonstrated that both TCL1-Akt interaction and oligomerization of TCL1 were required for TCL1-induced Akt activation and substrate phosphorylation. Assays for mitochondrial permeability transition, nuclear translocation, and cell recovery demonstrated that both Akt association and homodimerization of TCL1 are similarly needed for the full function of TCL1 as an Akt kinase coactivator in vivo. The results demonstrate the structural basis of TCL1-induced activation of Akt, which causes human T-PLL.
FEBS Letters | 1998
Christian Roumestand; Valérie Louis; André Aumelas; Gérard Grassy; Bernard Calas; Alain Chavanieu
Protegrins are members of a family of five Cys‐rich naturally occurring cationic antimicrobial peptides. The NMR solution structure of protegrin‐1 (PG‐1) has been previously determined as a monomeric β‐hairpin both in water and in dimethylsulfoxide solution. Protegrins are bactericidal peptides but their mechanism of action is still unknown. In order to investigate the structural basis of their cytotoxicity, we studied the effect of lipid micelles on the structure of PG‐1. The NMR study reported in the present work indicates that PG‐1 adopts a dimeric structure when it binds to dodecylphosphocholine micelles. Moreover, the amide proton exchange study suggests the possibility of an association between several dimers.
Structure | 2010
Philippe Barthe; Galina V. Mukamolova; Christian Roumestand; Martin Cohen-Gonsaud
PknB is a transmembrane Ser/Thr protein kinase that defines and belongs to an ultraconserved kinase subfamily found in Gram-positive bacteria. Essential for Mycobacterium tuberculosis growth, its close homolog in Bacillus subtilis has been linked to exit from dormancy. The kinase possesses an extracellular region composed of a repetition of PASTA domains, believed to bind peptidoglycan fragments that might act as a signaling molecule. We report here the first solution structure of this extracellular region. Small-angle X-ray scattering and nuclear magnetic resonance studies show that the four PASTA domains display an unexpected linear organization, contrary to what is observed in the distant protein PBP2x from Streptococccus pneumoniae where two PASTA domains fold over in a compact structure. We propose a model for PknB activation based on a ligand-dependent dimerization of the extracellular PASTA domains that initiates multiple signaling pathways.
The FASEB Journal | 2007
Masayuki Noguchi; Virginie Ropars; Christian Roumestand; Futoshi Suizu
Serine threonine kinase Akt, also called PKB (protein kinase B), plays a central role in regulating intracellular survival. Deregulation of this Akt signaling pathway underlies various human neoplastic diseases. Recently, the proto‐oncogene TCL1 (T cell leukemia 1), with a previously unknown physiological function, was shown to interact with the Akt pleckstrin homology domain, enhancing Akt kinase activity; hence, it functions as an Akt kinase coactivator. In contrast to pathological conditions in which the TCL1 gene is highly activated in various human neoplasmic diseases, the physiological expression of TCL1 is tightly limited to early developmental cells as well as various developmental stages of immune cells. The NBRE (nerve growth factor‐responsive element) of the proximal TCL1 promoter sequences can regulate the restricted physiological expression of TCL1 in a negative feedback mechanism. Further, based on the NMR structural studies of Akt‐TCL1 protein complexes, an inhibitory peptide, “Akt‐in,” consisting of the βA strand of TCL1, has been identified and has therapeutic potential. This review article summarizes and discusses recent advances in the understanding of TCL1‐Akt functional interaction in order to clarify the biological action of the proto‐oncogene TCL1 family and the development avenues for a suppressive drug specific for Akt, a core intracellular survival regulator.—Noguchi, M., Ropars, V., Roumestand, C., Suizu, F. Proto‐oncogene TCL1: more than just a coactivator for Akt. FASEB J. 21, 2273–2284 (2007)
Structure | 2009
Philippe Barthe; Christian Roumestand; Marc J. Canova; Laurent Kremer; Corinne Hurard; Virginie Molle; Martin Cohen-Gonsaud
The OdhI protein is key regulator of the TCA cycle in Corynebacterium glutamicum. This highly conserved protein is found in GC rich Gram-positive bacteria (e.g., the pathogenic Mycobacterium tuberculosis). The unphosphorylated form of OdhI inhibits the OdhA protein, a key enzyme of the TCA cycle, whereas the phosphorylated form is inactive. OdhI is predicted to be mainly a single FHA domain, a module that mediates protein-protein interaction through binding of phosphothreonine peptides, with a disordered N-terminal extension substrate of the serine/threonine protein kinases. In this study, we solved the solution structure of the unphosphorylated and phosphorylated isoforms of the protein. We observed a major conformational change between the two forms characterized by the binding of the phosphorylated N-terminal part of the protein to its own FHA domain, consequently inhibiting it. This structural observation corresponds to a new autoinhibition mechanism described for a FHA domain protein.
Journal of Biological Chemistry | 2004
Daniel Auguin; Philippe Barthe; Catherine A. Royer; Marc Henri Stern; Masayuki Noguchi; Stefan T. Arold; Christian Roumestand
Chromosomal translocations leading to overexpression of p14TCL1 and its homologue p13MTCP1 are hallmarks of several human T-cell malignancies (1). p14TCL1/p13MTCP1 co-activate protein kinase B (PKB, also named Akt) by binding to its pleckstrin homology (PH) domain, suggesting that p14TCL1/p13MTCP1 induce T-cell leukemia by promoting anti-apoptotic signals via PKB (2, 3). Here we combined fluorescence anisotropy, NMR, and small angle x-ray-scattering measurements to determine the affinities, molecular interfaces, and low resolution structure of the complex formed between PKBβ-PH and p14TCL1/p13MTCP1. We show that p14TCL1/p13MTCP1 target PKB-PH at a site that has not yet been observed in PH-protein interactions. Located opposite the phospholipid binding pocket and distal from known protein-protein interaction sites on PH domains, the binding of dimeric TCL1 proteins to this site would allow the crosslinking of two PKB molecules at the cellular membrane in a preactivated conformation without disrupting certain PH-ligand interactions. Thus this interaction could serve to strengthen membrane association, promote trans-phosphorylation, hinder deactivation of PKB, and involve PKB in a multi-protein complex, explaining the array of known effects of TCL1. The binding sites on both proteins present attractive drug targets against leukemia caused by TCL1 proteins.