Christian Ruzié
Université libre de Bruxelles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Ruzié.
Antimicrobial Agents and Chemotherapy | 2010
Liyi Huang; Ying-Ying Huang; Pawel Mroz; George P. Tegos; Timur Zhiyentayev; Sulbha K. Sharma; Zongshun Lu; Thiagarajan Balasubramanian; Michael Krayer; Christian Ruzié; Eunkyung Yang; Hooi Ling Kee; Christine Kirmaier; James R. Diers; David F. Bocian; Dewey Holten; Jonathan S. Lindsey; Michael R. Hamblin
ABSTRACT Photodynamic inactivation is a rapidly developing antimicrobial treatment that employs a nontoxic photoactivatable dye or photosensitizer in combination with harmless visible light to generate reactive oxygen species that are toxic to cells. Tetrapyrroles (e.g., porphyrins, chlorins, bacteriochlorins) are a class of photosensitizers that exhibit promising characteristics to serve as broad-spectrum antimicrobials. In order to bind to and efficiently penetrate into all classes of microbial cells, tetrapyrroles should have structures that contain (i) one or more cationic charge(s) or (ii) a basic group. In this report, we investigate the use of new stable synthetic bacteriochlorins that have a strong absorption band in the range 720 to 740 nm, which is in the near-infrared spectral region. Four bacteriochlorins with 2, 4, or 6 quaternized ammonium groups or 2 basic amine groups were compared for light-mediated killing against a Gram-positive bacterium (Staphylococcus aureus), a Gram-negative bacterium (Escherichia coli), and a dimorphic fungal yeast (Candida albicans). Selectivity was assessed by determining phototoxicity against human HeLa cancer cells under the same conditions. All four compounds were highly active (6 logs of killing at 1 μM or less) against S. aureus and showed selectivity for bacteria over human cells. Increasing the cationic charge increased activity against E. coli. Only the compound with basic groups was highly active against C. albicans. Supporting photochemical and theoretical characterization studies indicate that (i) the four bacteriochlorins have comparable photophysical features in homogeneous solution and (ii) the anticipated redox characteristics do not correlate with cell-killing ability. These results support the interpretation that the disparate biological activities observed stem from cellular binding and localization effects rather than intrinsic electronic properties. These findings further establish cationic bacteriochlorins as extremely active and selective near-infrared activated antimicrobial photosensitizers, and the results provide fundamental information on structure-activity relationships for antimicrobial photosensitizers.
The FASEB Journal | 2010
Pawel Mroz; Ying-Ying Huang; Angelika Szokalska; Timur Zhiyentayev; Sahar Janjua; Artemissia-Phoebe A.-P. Nifli; Margaret E. Sherwood; Christian Ruzié; K. Eszter Borbas; Dazhong Fan; Michael Krayer; Thiagarajan Balasubramanian; Eunkyung Yang; Hooi Ling Kee; Christine Kirmaier; James R. Diers; David F. Bocian; Dewey Holten; Jonathan S. Lindsey; Michael R. Hamblin
Cutaneous malignant melanoma remains a therapeutic challenge, and patients with advanced disease have limited survival. Photodynamic therapy (PDT) has been successfully used to treat many malignancies, and it may show promise as an antimelanoma modality. However, high melanin levels in melanomas can adversely affect PDT effectiveness. Herein the extent of melanin contribution to melanoma resistance to PDT was investigated in a set of melanoma cell lines that markedly differ in the levels of pigmentation;3 new bacteriochlorins successfully overcame the resistance. Cell killing studies determined that bacteriochlorins are superior at (LD50≈0.1 µM) when compared with controls such as the FDA‐approved Photofrin (LD50≈10 µM) and clinically tested LuTex (LD50≈=1 µM). The melanin content affects PDT effectiveness, but the degree of reduction is significantly lower for bacteriochlorins than for Photofrin. Microscopy reveals that the least effective bacteriochlorin localizes predominantly in lysosomes, while the most effective one preferentially accumulates in mitochondria. Interestingly all bacteriochlorins accumulate in melanosomes, and subsequent illumination leads to melanosomal damage shown by electron microscopy. Fluorescent probes show that the most effective bacteriochlorin produces significantly higher levels of hydroxyl radicals, and this is consistent with the redox properties suggested by molecular‐orbital calculations. The best in vitro performing bacteriochlorin was tested in vivo in a mouse melanoma model using spectrally resolved fluorescence imaging and provided significant survival advantage with 20% of cures (P<0.01).—Mroz, P., Huang, Y.‐Y., Szokalska, A., Zhiyentayev, T., Janjua, S., Nifli, A.‐P., Sherwood, M. E., Ruzié, C., Borbas, K. E., Fan, D., Krayer, M., Balasubramanian, T., Yang, E., Kee, H. L., Kirmaier, C., Diers, J. R., Bocian, D. F., Holten, D., Lindsey, J. S., Hamblin, M. R. Stable synthetic bacteriochlorins overcome the resistance of melanoma to photodynamic therapy. FASEB J. 24, 3160–3170 (2010). www.fasebj.org
Journal of Medicinal Chemistry | 2010
Ying-Ying Huang; Pawel Mroz; Timur Zhiyentayev; Sulbha K. Sharma; Thiagarajan Balasubramanian; Christian Ruzié; Michael Krayer; Dazhong Fan; K. Eszter Borbas; Eunkyung Yang; Hooi Ling Kee; Christine Kirmaier; James R. Diers; David F. Bocian; Dewey Holten; Jonathan S. Lindsey; Michael R. Hamblin
Photodynamic therapy (PDT) is a rapidly developing approach to treating cancer that combines harmless visible and near-infrared light with a nontoxic photoactivatable dye, which upon encounter with molecular oxygen generates the reactive oxygen species that are toxic to cancer cells. Bacteriochlorins are tetrapyrrole compounds with two reduced pyrrole rings in the macrocycle. These molecules are characterized by strong absorption features from 700 to >800 nm, which enable deep penetration into tissue. This report describes testing of 12 new stable synthetic bacteriochlorins for PDT activity. The 12 compounds possess a variety of peripheral substituents and are very potent in killing cancer cells in vitro after illumination. Quantitative structure-activity relationships were derived, and subcellular localization was determined. The most active compounds have both low dark toxicity and high phototoxicity. This combination together with near-infrared absorption gives these bacteriochlorins great potential as photosensitizers for treatment of cancer.
Nature Communications | 2015
Mirella El Gemayel; Karl Börjesson; Martin Herder; Duc T. Duong; James A. Hutchison; Christian Ruzié; Guillaume Schweicher; Alberto Salleo; Yves Geerts; Stefan Hecht; Emanuele Orgiu; Paolo Samorì
The fabrication of multifunctional high-performance organic thin-film transistors as key elements in future logic circuits is a major research challenge. Here we demonstrate that a photoresponsive bi-functional field-effect transistor with carrier mobilities exceeding 0.2 cm(2) V(-1) s(-1) can be developed by incorporating photochromic molecules into an organic semiconductor matrix via a single-step solution processing deposition of a two components blend. Tuning the interactions between the photochromic diarylethene system and the organic semiconductor is achieved via ad-hoc side functionalization of the diarylethene. Thereby, a large-scale phase-segregation can be avoided and superior miscibility is provided, while retaining optimal π-π stacking to warrant efficient charge transport and to attenuate the effect of photoinduced switching on the extent of current modulation. This leads to enhanced electrical performance of transistors incorporating small conjugated molecules as compared with polymeric semiconductors. These findings are of interest for the development of high-performing optically gated electronic devices.
Advanced Materials | 2015
Guillaume Schweicher; Vincent Lemaur; Claude Niebel; Christian Ruzié; Ying Diao; Osamu Goto; Wen-Ya Lee; Yeongin Kim; Jean-Baptiste Arlin; Jolanta Karpinska; Alan R. Kennedy; Sean Parkin; Yoann Olivier; Stefan C. B. Mannsfeld; Jérôme Cornil; Yves Geerts; Zhenan Bao
A series of bulky end-capped [1]benzothieno[3,2-b]benzothiophenes (BTBTs) are developed in order to tune the packing structure via terminal substitution. A coupled theoretical and experimental study allows us to identify 2,7-di-tert-butylBTBT as a new high-performance organic semiconductor with large and well-balanced transfer integrals, as evidenced by quantum-chemical calculations. Single-crystal field-effect transistors show a remarkable average saturation mobility of 7.1 cm(2) V(-1) s(-1) .
Journal of Organic Chemistry | 2008
Christian Ruzié; Michael Krayer; Thiagarajan Balasubramanian; Jonathan S. Lindsey
Bacteriochlorins are attractive candidates for photodynamic therapy (PDT) of diverse medical indications owing to their strong absorption in the near-infrared (NIR) region, but their use has been stymied by lack of access to stable, synthetically malleable molecules. To overcome these limitations, a synthetic free base 3,13-dibromobacteriochlorin (BC-Br(3)Br(13)) has been exploited as a building block in the synthesis of diverse bacteriochlorins via Pd-mediated coupling reactions (Sonogashira, Suzuki, and reductive carbonylation). Each bacteriochlorin is stable to adventitious dehydrogenation by virtue of the presence of a geminal dimethyl group in each pyrroline ring. The target bacteriochlorins bear cationic, lipophilic, or amphipathic substituents at the 3- and 13- (beta-pyrrolic) positions. A dicarboxybacteriochlorin was converted to amide derivatives via the intermediate diacid chloride. A diformylbacteriochlorin was subjected to reductive amination to give aminomethyl derivatives. A set of 3,5-disubstituted aryl groups bearing lipophilic or amphipathic groups was introduced via Suzuki coupling. Altogether 22 free base bacteriochlorins have been prepared. Eight aminoalkylbacteriochlorins were quaternized with methyl iodide at two or four amine sites per molecule, which resulted in water solubility. Each bacteriochlorin exhibits a Q(y) absorption band in the range of 720-772 nm. The ability to introduce a wide variety of peripheral functional groups makes these bacteriochlorins attractive candidates for diverse applications in photomedicine including PDT in the NIR region.
Advanced Materials | 2016
Yusuke Tsutsui; Guillaume Schweicher; Basab Chattopadhyay; Tsuneaki Sakurai; Jean-Baptiste Arlin; Christian Ruzié; Almaz Aliev; Artur Ciesielski; Silvia Colella; Alan R. Kennedy; Vincent Lemaur; Yoann Olivier; Rachid Hadji; Lionel Sanguinet; Frédéric Castet; Silvio Osella; Dmytro Dudenko; David Beljonne; Jérôme Cornil; Paolo Samorì; Shu Seki; Yves Geerts
The structural and electronic properties of four isomers of didodecyl[1]-benzothieno[3,2-b][1]benzothiophene (C12-BTBT) have been investigated. Results show the strong impact of the molecular packing on charge carrier transport and electronic polarization properties. Field-induced time-resolved microwave conductivity measurements unravel an unprecedented high average interfacial mobility of 170 cm(2) V(-1) s(-1) for the 2,7-isomer, holding great promise for the field of organic electronics.
Organic Letters | 2009
Christian Ruzié; Michael Krayer; Jonathan S. Lindsey
The reaction of an acetylchlorin or diacetylbacteriochlorin with an aldehyde under microwave conditions readily affords the corresponding hydroporphyrin-chalcone. The aldehydes include aryl aldehydes, cinnamaldehyde, and all-trans-retinal. The chalcone causes a bathochromic shift of the long-wavelength absorption band of the hydroporphyrin by up to 24 nm. The facile conjugation and wavelength tunability should make such constructs valuable for fundamental spectroscopic studies as well as diverse photochemical applications in the relatively unexplored red and near-infrared spectral regions.
Journal of Porphyrins and Phthalocyanines | 2009
Michael Krayer; Thiagarajan Balasubramanian; Christian Ruzié; Marcin Ptaszek; David L. Cramer; Masahiko Taniguchi; Jonathan S. Lindsey
Bromo-substituted hydrodipyrrins are valuable precursors to synthetic bromo-chlorins and bromo-bacteriochlorins, which in turn are versatile substrates for derivatization in pursuit of diverse molecular designs. 8-bromo-2,3-dihydro-1-(1,1-dimethoxymethyl)-3,3-dimethyldipyrrin (1) is a crucial precursor in the rational synthesis of the bacteriochlorin building block 3,13-dibromo-8,8,18,18-tetramethylbacteriochlorin (H2BC-Br3Br13). 8-bromo-2,3,4,5-tetrahydro-1,3,3-trimethyldipyrrin (2) is a crucial precursor in the rational synthesis of the analogous 3,13-disubstituted chlorin building block (e.g.H2C-Br3M10Br13). The routes to 1 and 2 share a common precursor, namely 4-bromo-2-(2-nitroethyl)-1-N-tosylpyrrole (6-Ts), which is derived from pyrrole-2-carboxaldehyde. The prior seven-step synthesis of 1 from pyrrole-2-carboxaldehyde has limited access to H2BC-Br3Br13 given the large excesses of materials, extensive reliance on column chromatography, and low overall yield (1.4%). Refined procedures for synthesis of the common precursor 6-Ts as well as 1 and 2 afford the advantages of (1) diminished consumption of solvents and reagents, (2) limited or no use of chlorinated solvents, (3) limited or no chromatography, and (4) improved yields of most steps. Streamlined procedures enable the final two or three transformations to be performed without purification of intermediates. The new procedures facilitate the expedient preparation of 1 and 2 at the multigram scale.
Organic Letters | 2008
K. Eszter Borbas; Christian Ruzié; Jonathan S. Lindsey
Bacteriochlorins absorb strongly in the near-infrared spectral region and hence are ideally suited for diverse photomedical applications, yet naturally occurring bacteriochlorins have limited stability and synthetic malleability. A de novo route has been exploited to prepare synthetic bacteriochlorins that bear a geminal dimethyl group in each pyrroline ring for stability and a symmetrically branched 1,5-dimethoxypentyl group attached to each pyrrole ring for solubility in lipophilic media.