Christian Sánchez-Espinel
University of Vigo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Sánchez-Espinel.
Small | 2008
B. Díaz; Christian Sánchez-Espinel; Manuel Arruebo; Jose Faro; Encarnación de Miguel; Susana Magadán; Clara Yagüe; Rodrigo Fernández-Pacheco; M. Ricardo Ibarra; Jesus Santamaria; África González-Fernández
Inorganic nanoparticles (NPs) show great potential for medicinal therapy. However, biocompatibility studies are essential to determine if they are safe. Here, five different NPs are compared for their cytotoxicity, internalization, aggregation in medium, and reactive oxygen species (ROS) production, using tumoral and normal human blood cells. Differences depending on the cell type are analyzed, and no direct correlation between ROS production and cell toxicity is found. Results are discussed with the aim of standardizing the procedures for the evaluation of the toxicity.
Analytical Chemistry | 2009
Alfredo de la Escosura-Muñiz; Christian Sánchez-Espinel; Belén Díaz-Freitas; África González-Fernández; Marisa Maltez-da Costa; Arben Merkoçi
There is a high demand for simple, rapid, efficient, and user-friendly alternative methods for the detection of cells in general and, in particular, for the detection of cancer cells. A biosensor able to detect cells would be an all-in-one dream device for such applications. The successful integration of nanoparticles into cell detection assays could allow for the development of this novel class of cell sensors. Indeed, their application could well have a great future in diagnostics, as well as other fields. As an example of a novel biosensor, we report here an electrocatalytic device for the specific identification of tumor cells that quantifies gold nanoparticles (AuNPs) coupled with an electrotransducing platform/sensor. Proliferation and adherence of tumor cells are achieved on the electrotransducer/detector, which consists of a mass-produced screen-printed carbon electrode (SPCE). In situ identification/quantification of tumor cells is achieved with a detection limit of 4000 cells per 700 microL of suspension. This novel and selective cell-sensing device is based on the reaction of cell surface proteins with specific antibodies conjugated with AuNPs. Final detection requires only a couple of minutes, taking advantage of the catalytic properties of AuNPs on hydrogen evolution. The proposed detection method does not require the chemical agents used in most existing assays for the detection of AuNPs. It allows for the miniaturization of the system and is much cheaper than other expensive and sophisticated methods used for tumor cell detection. We envisage that this device could operate in a simple way as an immunosensor or DNA sensor. Moreover, it could be used, even by inexperienced staff, for the detection of protein molecules or DNA strands.
Developmental and Comparative Immunology | 2010
Francisco Gambón-Deza; Christian Sánchez-Espinel; Susana Magadán-Mompó
This study describes the IGH locus in Gasterosteus aculeatus, with 10 genes encoding three immunoglobulin classes: IgT, IgM and IgD. These genes are organized into a structure with three repeats of IGHT-IGHM-IGHD separated by segments including the VH segments. There was also a fourth IGHT gene. IGHT encodes an antibody with three immunoglobulin domains. Comparative studies indicate it is related to IgT and IgZ and other antibodies located upstream of the IGHM in teleost fish. The IGHM and IGHD are similar to the ones described in teleost. The IGHM has four immunoglobulin domains while the IGHD seven and none is duplicated. The IGH locus of G. aculeatus has 49 VH segments located in four regions. They belonged to four families, whose members show a greater than 92% amino acid identity, indicating that VH families diversified recently. Phylogenetic reconstruction suggests they were originated from four VH segments that must have duplicated with the constant region genes, after that the four VH segments gave rise to the remaining segments. This suggests the presence of an active biological process that generates diversity in VH regions.
Biosensors and Bioelectronics | 2010
Alfredo de la Escosura-Muñiz; Marisa Maltez-da Costa; Christian Sánchez-Espinel; Belén Díaz-Freitas; Jonathan Fernández-Suarez; África González-Fernández; Arben Merkoçi
A sandwich immunoassay using magnetic beads as bioreaction platforms and AuNPs as electroactive labels for the electrochemical detection of human IgG antibodies anti-Hepatitis B surface antigen (HBsAg), is here presented as an alternative to the standard methods used in hospitals for the detection of human antibodies directed against HBsAg (such as ELISA or MEIA). The electrochemical detection of AuNPs is carried out approaching their catalytic properties towards the hydrogen evolution in an acidic medium, without previous nanoparticle dissolution. The obtained results are a good promise toward the development of a fully integrated biosensing set-up. The developed technology based on this detection mode would be simple to use, low cost and integrated into a portable instrumentation that may allow its application even at doctor-office. The sample volumes required can be lower than those used in the traditional methods. This may lead to several other applications with interest for clinical control.
Small | 2010
Ángela França; Beatriz Pelaz; María Moros; Christian Sánchez-Espinel; Andrea Hernández; Cristina Fernández-López; Valeria Grazú; Jesús M. de la Fuente; Isabel Pastoriza-Santos; Luis M. Liz-Marzán; África González-Fernández
Nanoparticles (NPs) can offer many advantages over traditional drug design and delivery, as well as toward medical diagnostics. As with any medical device or pharmaceutical drug intended to be used for in vivo biomedical applications, NPs must be sterile. However, very little is known regarding the effect of sterilization methods on the intrinsic properties and stability of NPs. Herein a detailed analysis of physicochemical properties of two types of AuNPs upon sterilization by means of five different techniques is reported. In addition, cell viability and production of reactive oxygen species are studied. The results indicate that sterilization by ethylene oxide seems to be the most appropriate technique for both types of NPs. It is concluded that it is crucial to test several methods in order to establish the specific type of sterilization to be performed for each particular NP.
Molecular Immunology | 2009
Francisco Gambón-Deza; Christian Sánchez-Espinel; S. Magadán-Mompó
Immunoglobulins loci in mammals are well known to be organized within a translocon, however their origin remains unresolved. Four of the five classes of immunoglobulins described in humans and rodents (immunoglobulins M, G, E and A-IgM, IgG, IgE and IgA) were found in marsupials and monotremes (immunoglobulin D-IgD was not found) thus showing that the genomic structure of antibodies in mammals has remained constant since its origin. We have recently described the genomic organization of the immunoglobulin heavy chain locus in reptiles (IGHM, IGHD and IGHY). These data and the characterization of the IGH locus in platypus (Ornithorhynchus anatinus), allow us to elucidate the changes that took place in this genomic region during evolution from reptile to mammal. Thus, by using available genome data, we were able to detect that platypus IGH locus contains reptilian and mammalian genes. Besides having an IGHD that is very similar to the one in reptiles and an IGHY, they also present the mammal specific antibody genes IGHG and IGHE, in addition to IGHA. We also detected a pseudogene that originated by recombination between the IGHD and the IGHM (similar to the IGHD2 found in Eublepharis macularius). The analysis of the IGH locus in platypus shows that IGHY was duplicated, firstly by evolving into IGHE and then into IGHG. The IGHA of the platypus has a complex origin, and probably arose by a process of recombination between the IGHM and the IGHY. We detected about 44 VH genes (25 were already described), most of which comprise a single group. When we compared these VH genes with those described in Anolis carolinensis, we find that there is an evolutionary relationship between the VH genes of platypus and the reptilian Group III genes. These results suggest that a fast VH turnover took place in platypus and this gave rise to a family with a high VH gene number and the disappearance of the earlier VH families.
Immunogenetics | 2013
Susana Magadán-Mompó; Christian Sánchez-Espinel; Francisco Gambón-Deza
Immunoglobulin loci of two representatives of the order Crocodylia were studied from full genome sequences. Both Alligator mississippiensis and Crocodylus porosus have 13 genes for the heavy chain constant regions of immunoglobulins. The IGHC locus contains genes encoding four immunoglobulins M (IgM), one immunoglobulin D (IgD), three immunoglobulins A (IgA), three immunoglobulins Y (IgY), and two immunoglobulins D2 (IgD2). IgA and IgD2 genes were found in reverse transcriptional orientation compared to the other Ig genes. The IGHD gene contains 11 exons, four of which containing stop codons or sequence alterations. As described in other reptiles, the IgD2 is a chimeric Ig with IgA- and IgD-related domains. This work clarifies the origin of bird IgA and its evolutionary relationship with amphibian immunoglobulin X (IgX) as well as their links with mammalian IgA.
Immunogenetics | 2013
Susana Magadán-Mompó; Christian Sánchez-Espinel; Francisco Gambón-Deza
The availability of reptile genomes for the use of the scientific community is an exceptional opportunity to study the evolution of immunoglobulin genes. The genome of Chrysemys picta bellii and Pelodiscus sinensis is the first one that has been reported for turtles. The scanning for immunoglobulin genes resulted in the presence of a complex locus for the immunoglobulin heavy chain (IGH). This IGH locus in both turtles contains genes for 13 isotypes in C. picta bellii and 17 in P. sinensis. These correspond with one immunoglobulin M, one immunoglobulin D, several immunoglobulins Y (six in C. picta bellii and eight in P. sinensis), and several immunoglobulins that are similar to immunoglobulin D2 (five in C. picta belli and seven in P. sinensis) that was previously described in Eublepharis macularius. It is worthy to note that IGHD2 are placed in an inverted transcriptional orientation and present sequences for two immunoglobulin domains that are similar to bird IgA domains. Furthermore, its phylogenetic analysis allows us to consider about the presence of IGHA gene in a primitive reptile, so we would be dealing with the memory of the gene that originated from the bird IGHA. In summary, we provide a clear picture of the immunoglobulins present in a turtle, whose analysis supports the idea that turtles emerged from the evolutionary line from the differentiation of birds and the presence of the IGHA gene present in a common ancestor.
BMC Evolutionary Biology | 2011
Susana Magadán-Mompó; Christian Sánchez-Espinel; Francisco Gambón-Deza
BackgroundBony fish present an immunological system, which evolved independently from those of animals that migrated to land 400 million years ago. The publication of whole genome sequences and the availability of several cDNA libraries for medaka (Oryzias latipes) permitted us to perform a thorough analysis of immunoglobulin heavy chains present in this teleost.ResultsWe identified IgM and IgD coding ESTs, mainly in spleen, kidney and gills using published cDNA libraries but we did not find any sequence that coded for IgT or other heavy chain isotypes described in fish. The IgM - ESTs corresponded with the secreted and membrane forms and surprisingly, the latter form only presented two constant heavy chain domains. This is the first time that this short form of membrane IgM is described in a teleost. It is different from that identified in Notothenioid teleost because it does not present the typical splicing pattern of membrane IgM. The identified IgD-ESTs only present membrane transcripts, with Cμ1 and five Cδ exons. Furthermore, there are ESTs with sequences that do not have any VH which disrupt open reading frames.A scan of the medaka genome using transcripts and genomic short reads resulted in five zones within a region on chromosome 8 with Cμ and Cδ exons. Some of these exons do not form part of antibodies and were at times interspersed, suggesting a recombination process between zones. An analysis of the ESTs confirmed that no antibodies are expressed from zone 3.ConclusionsOur results suggest that the IGH locus duplication is very common among teleosts, wherein the existence of a recombination process explains the sequence homology between them.
Immunogenetics | 2013
David N. Olivieri; Jose Faro; Bernardo von Haeften; Christian Sánchez-Espinel; Francisco Gambón-Deza
Variable (V) domains of immunoglobulins (Ig) and T cell receptors (TCR) are generated from genomic V gene segments (V-genes). At present, such V-genes have been annotated only within the genome of a few species. We have developed a bioinformatics tool that accelerates the task of identifying functional V-genes from genome datasets. Automated recognition is accomplished by recognizing key V-gene signatures, such as recombination signal sequences, size of the exon region, and position of amino acid motifs within the translated exon. This algorithm also classifies extracted V-genes into either TCR or Ig loci. We describe the implementation of the algorithm and validate its accuracy by comparing V-genes identified from the human and mouse genomes with known V-gene annotations documented and available in public repositories. The advantages and utility of the algorithm are illustrated by using it to identify functional V-genes in the rat genome, where V-gene annotation is still incomplete. This allowed us to perform a comparative human–rodent phylogenetic analysis based on V-genes that supports the hypothesis that distinct evolutionary pressures shape the TCRs and Igs V-gene repertoires. Our program, together with a user graphical interface, is available as open-source software, downloadable at http://code.google.com/p/vgenextract/.