Christian Schöb
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Schöb.
Ecology Letters | 2015
Andrew Siefert; Cyrille Violle; Loïc Chalmandrier; Cécile H. Albert; Adrien Taudiere; Alex Fajardo; Lonnie W. Aarssen; Christopher Baraloto; Marcos B. Carlucci; Marcus Vinicius Cianciaruso; Vinícius de L. Dantas; Francesco de Bello; Leandro da Silva Duarte; Carlos Fonseca; Grégoire T. Freschet; Stéphanie Gaucherand; Nicolas Gross; Kouki Hikosaka; Benjamin G. Jackson; Vincent Jung; Chiho Kamiyama; Masatoshi Katabuchi; Steven W. Kembel; Emilie Kichenin; Nathan J. B. Kraft; Anna Lagerström; Yoann Le Bagousse-Pinguet; Yuanzhi Li; Norman W. H. Mason; Julie Messier
Recent studies have shown that accounting for intraspecific trait variation (ITV) may better address major questions in community ecology. However, a general picture of the relative extent of ITV compared to interspecific trait variation in plant communities is still missing. Here, we conducted a meta-analysis of the relative extent of ITV within and among plant communities worldwide, using a data set encompassing 629 communities (plots) and 36 functional traits. Overall, ITV accounted for 25% of the total trait variation within communities and 32% of the total trait variation among communities on average. The relative extent of ITV tended to be greater for whole-plant (e.g. plant height) vs. organ-level traits and for leaf chemical (e.g. leaf N and P concentration) vs. leaf morphological (e.g. leaf area and thickness) traits. The relative amount of ITV decreased with increasing species richness and spatial extent, but did not vary with plant growth form or climate. These results highlight global patterns in the relative importance of ITV in plant communities, providing practical guidelines for when researchers should include ITV in trait-based community and ecosystem studies.
Functional Ecology | 2014
Richard Michalet; Christian Schöb; Christopher J. Lortie; Rob W. Brooker; Ragan M. Callaway
Summary Altitudinal gradients provide a useful space-for-time substitution to examine the capacity for plant competition and facilitation to mediate responses to climate change. Decomposing net interactions into their facilitative and competitive components, and quantifying the performance of plants with and without neighbours along altitudinal gradients, may prove particularly informative in understanding the mechanisms behind plant responses to environmental change. To decouple the inherent responses of species to climate from the responses of plant–plant interactions to climate, we conducted a meta-analysis. Using data from 16 alpine experiments, we tested if changes in net interactions along altitudinal gradients were due to a change in the performance of target species without neighbours (i.e. environmental severity effects only) or with neighbours (neighbour trait mediated effects). There was a global shift from competition to facilitation with increasing altitude driven by both environmental severity and neighbour trait effects. However, this global pattern was strongly influenced by the high number of studies in mesic climates and driven by competition at low altitude in temperate climates (neighbour trait effect), and facilitation at high altitude in arctic and temperate climates (environmental severity effect). In Mediterranean systems, there was no significant effect of competition, and facilitation increased with decreasing altitude. Changes in facilitation with altitude could not unambiguously be attributed to either neighbour trait effects or environmental severity effects, probably because of the opposing stress gradients of cold and aridity in dry environments. Partitioning net interactions along altitudinal gradients led to the prediction that climate change should decrease the importance of facilitation in mesic alpine communities, which might in turn exacerbate the negative effects of climate change in these regions. In xeric climates, the importance of facilitation by drought-tolerant species should increase at low altitudes which should mitigate the negative effect of climate change. However, the importance of facilitation by cold-tolerant species at high altitudes may decrease and exacerbate the effects of climate change.
New Phytologist | 2015
Christian Schöb; Sarah Kerle; Alison J. Karley; Luna Morcillo; Robin J. Pakeman; Adrian C. Newton; Rob W. Brooker
Biodiversity regulates ecosystem functions such as productivity, and experimental studies of species mixtures have revealed selection and complementarity effects driving these responses. However, the impacts of intraspecific genotypic diversity in these studies are unknown, despite it forming a substantial part of the biodiversity. In a glasshouse experiment we constructed plant communities with different levels of barley (Hordeum vulgare) genotype and weed species diversity and assessed their relative biodiversity effects through additive partitioning into selection and complementarity effects. Barley genotype diversity had weak positive effects on aboveground biomass through complementarity effects, whereas weed species diversity increased biomass predominantly through selection effects. When combined, increasing genotype diversity of barley tended to dilute the selection effect of weeds. We interpret these different effects of barley genotype and weed species diversity as the consequence of small vs large trait variation associated with intraspecific barley diversity and interspecific weed diversity, respectively. The different effects of intra- vs interspecific diversity highlight the underestimated and overlooked role of genetic diversity for ecosystem functioning.
Functional Ecology | 2016
Rob W. Brooker; Alison J. Karley; Adrian C. Newton; Robin J. Pakeman; Christian Schöb
Summary Food security is currently considered a major global problem. However, increasing intensity of food production in agricultural systems has driven reductions in farmland biodiversity. A major challenge is to enable biodiversity conservation whilst addressing the problem of food security. Here we describe how facilitative plant-plant interactions in crop systems could be used to help strike this balance. An obvious example is that of intercropping systems, where combinations of crop species can – under some circumstances – deliver reduced inputs of agrochemicals (fertilisers, pesticides) per unit yield, with potential knock-on benefits for biodiversity conservation. Other facilitative processes can also play a role in biodiversity conservation. Increased intra-specific crop genetic diversity can help protect crops from pests and diseases. Although overlooked in facilitation research, we argue that the mechanisms operate in a manner which is directly analogous to associational defence against herbivores, a process well-recognised in the facilitation literature. As with intercropping, the benefits to nature conservation arise from reduced pesticide use per unit harvested crop. Crops may have facilitative effects on some arable weed species, particularly those that are currently considered rare in intensive farming systems. Work is in its early stages to understand the underlying mechanisms, but it appears that crops might create niche space to which some weed species are adapted. Increasing plant species diversity through niche space creation may then have cascading benefits for other components of farmland biodiversity. Our new understanding of facilitative processes arising from work on crop systems has lessons for the study of facilitative interactions in natural and semi-natural communities. We argue that, although easier to identify and quantify in crop systems, some of these facilitative processes have to date been overlooked in studies of non-crop systems, and certainly deserve further consideration. Finally we discuss what steps may be needed to move from our understanding of the role of facilitation to the development of new agricultural practice. In some cases the challenge may be one of encouraging uptake of existing practices, and in others more research is needed to understand how new ecological understanding might deliver more sustainable agricultural practice.
New Phytologist | 2014
Christian Schöb; Ragan M. Callaway; Fabien Anthelme; Rob W. Brooker; Lohengrin A. Cavieres; Zaal Kikvidze; Christopher J. Lortie; Richard Michalet; Francisco I. Pugnaire; Sa Xiao; Brittany H. Cranston; Mary‐Carolina García; Nicole Hupp; Luis D. Llambí; Emanuele Lingua; Anya M. Reid; Liang Zhao; Bradley J. Butterfield
Facilitative effects of some species on others are a major driver of biodiversity. These positive effects of a benefactor on its beneficiary can result in negative feedback effects of the beneficiary on the benefactor and reduced fitness of the benefactor. However, in contrast to the wealth of studies on facilitative effects in different environments, we know little about whether the feedback effects show predictable patterns of context dependence. We reanalyzed a global data set on alpine cushion plants, previously used to assess their positive effects on biodiversity and the nature of the beneficiary feedback effects, to specifically assess the context dependence of how small- and large-scale drivers alter the feedback effects of cushion-associated (beneficiary) species on their cushion benefactors using structural equation modelling. The effect of beneficiaries on cushions became negative when beneficiary diversity increased and facilitation was more intense. Local-scale biotic and climatic conditions mediated these community-scale processes, having indirect effects on the feedback effect. High-productivity sites demonstrated weaker negative feedback effects of beneficiaries on the benefactor. Our results indicate a limited impact of the beneficiary feedback effects on benefactor cushions, but strong context dependence. This context dependence may help to explain the ecological and evolutionary persistence of this widespread facilitative system.
Functional Ecology | 2016
Richard Michalet; Christian Schöb; Sa Xiao; Liang Zhao; Tuo Chen; Lizhe An; Ragan M. Callaway
1. In facilitative interactions, the beneficiary feedback effect (BFE) has been defined as the effect of beneficiary species (facilitated species) on their benefactor. BFEs have been shown to be dependent on environmental conditions and the composition of the beneficiary community. In alpine cushion systems, BFEs are more negative with more abundant, diverse and phylogenetically aggregated communities of beneficiary species. 2. We tested the hypothesis that the functional composition of the beneficiary communities correlates with the direction and strength of BFE received by alpine cushion benefactors and specifically that a more negative BFE would occur with increasing density of graminoids and a more positive BFE would occur with increasing density of forbs and legumes. Additionally, we predicted that the negative BFE of graminoids would increase with increasing summer aridity. 3. We used a data base of alpine cushion communities from 30 sites throughout the world to assess the overall relationship between the composition of beneficiary communities and the total flower density of cushion benefactors, and its variation with increasing drought. Additionally, in order to assess more precisely the role of the functional composition of the beneficiary communities on BFE in a very dry site with cushion benefactors exhibiting contrasting functional compositions of beneficiary communities, we also designed a field study in the Qilian Shan mountain range (China). At this site with a highly continental climate, we compared the number of flowers and fruits of different phenotypes of the alpine cushion species Thylacospermum caespitosum hosting numerous graminoids, numerous forbs or very few beneficiary species. 4. In the intercontinental study, we found a negative relationship between graminoids and cushion benefactor flower density but no effect of other functional groups. The negative BFE of graminoids increased with increasing summer drought. In the dry Qilian Shan range, we found both a negative effect of graminoids on total flower density and a positive effect of forbs on flower density and fruit set. 5. Our study indicates that the context dependence of BFE may be partially explained by the composition of beneficiary communities and in particular the negative effect of graminoids.
Functional Ecology | 2017
Gianalberto Losapio; Christian Schöb
1. Plant interactions are fundamental processes for structuring plant communities and are an important mechanism governing the response of plant species and communities to environmental changes. Thus, understanding the role played by the interaction network in modulating the impact of environmental changes on plant community composition and diversity is crucial. Here, we aimed to develop a new analytical and conceptual framework to evaluate the responses of plant communities to environmental changes. 2. This framework uses functional traits as sensitivity measures for simulated environmental changes and assesses the consequences of microhabitat loss. We show here its application to an alpine plant community where we recorded functional traits (specific leaf area [SLA] and leaf dry matter content [LDMC) of all plants associated with three foundation species or the surrounding open areas. We then simulated primary species loss based on different scenarios of environmental change and explored community persistence to the loss of foundation species. 3. Generally, plant community responses differed among environmental change scenarios. In a scenario of increasing drought alone (i.e. species with lower LDMC were lost first) or increasing drought with increasing temperature (i.e. species with lower LDMC and higher SLA were lost first), the plant community resisted because drought-tolerant foundation species tolerated those deteriorating conditions. However, in scenarios with increasing nitrogen input (i.e. species having lower SLA were lost earlier), foundation species accelerated species loss due to their early primary extinctions and the corresponding secondary extinctions of species associated to their microhabitat. 4. The resistance of a plant community depends on the driver of environmental change, meaning that the prediction of the fate of this system is depending on the knowledge of the main driver of environmental change. Our framework provides a mechanistic understanding of an ecosystem response to such environmental changes thanks to the integration of biologyinformed criteria of species sensitivities to environmental factors into a network of interacting species.
Ecology and Evolution | 2017
Michael J. O'Brien; Francisco I. Pugnaire; Cristina Armas; Susana Rodríguez-Echeverría; Christian Schöb
Abstract The stress‐gradient hypothesis predicts a higher frequency of facilitative interactions as resource limitation increases. Under severe resource limitation, it has been suggested that facilitation may revert to competition, and identifying the presence as well as determining the magnitude of this shift is important for predicting the effect of climate change on biodiversity and plant community dynamics. In this study, we perform a meta‐analysis to compare temporal differences of species diversity and productivity under a nurse plant (Retama sphaerocarpa) with varying annual rainfall quantity to test the effect of water limitation on facilitation. Furthermore, we assess spatial differences in the herbaceous community under nurse plants in situ during a year with below‐average rainfall. We found evidence that severe rainfall deficit reduced species diversity and plant productivity under nurse plants relative to open areas. Our results indicate that the switch from facilitation to competition in response to rainfall quantity is nonlinear. The magnitude of this switch depended on the aspect around the nurse plant. Hotter south aspects under nurse plants resulted in negative effects on beneficiary species, while the north aspect still showed facilitation. Combined, these results emphasize the importance of spatial heterogeneity under nurse plants for mediating species loss under reduced precipitation, as predicted by future climate change scenarios. However, the decreased water availability expected under climate change will likely reduce overall facilitation and limit the role of nurse plants as refugia, amplifying biodiversity loss.
Journal of Vegetation Science | 2017
Christian Schöb; Petr Macek; Nuria Pistón; Zaal Kikvidze; Francisco I. Pugnaire
Question In plant communities, the presence of a species has consequences for other species, with some being competitively excluded while others benefit from the close vicinity of neighbours. Even though such specificity in plant interactions is common and known, there is no empirical assessment of the mechanisms that would help us understand its importance for plant diversity. Here we asked whether analysing spatial associations between plant traits known to affect the environment (i.e. effect traits) and those known to respond to the environment (i.e. response traits) might explain plant–plant interactions and their role in community assembly. Location Sierra Nevada Mountains, Spain Methods In a field study, we addressed the specificity of plant–plant interactions by quantifying effect traits of three co-occurring cushion-forming species and response traits of their associated plant assemblages. Traits were measured at the individual level and then aggregated to trait metrics (mean, range, dispersion) at the plot level. Finally, plot-level metrics of effect traits were related to response traits and the species composition of plant communities. Results Each cushion-forming species had a distinctive combination of effect traits and harboured a unique plant community with an exclusive composition of response traits. With multivariate statistics we showed that differences in effect traits (branch density and canopy height) among and within cushion species significantly explained response traits (specific leaf area, leaf dry matter content and plant height) of associated species and the local-scale species composition. Conclusions Using effect and response traits measured at the individual level, we provide a mechanistic understanding of the species-specificity of plant interactions and demonstrate how important such specificity is for species diversity in an ecosystem. This article is protected by copyright. All rights reserved.
Journal of Ecology | 2018
Yuanzhi Li; Bill Shipley; Jodi N. Price; Vinícius de L. Dantas; Riin Tamme; Mark Westoby; Andrew Siefert; Brandon S. Schamp; Marko J. Spasojevic; Vincent Jung; Daniel C. Laughlin; Sarah J. Richardson; Yoann Le Bagousse-Pinguet; Christian Schöb; Antonio Gazol; Honor C. Prentice; Nicolas Gross; Jake Overton; Marcus Vinicius Cianciaruso; Frédérique Louault; Chiho Kamiyama; Tohru Nakashizuka; Kouki Hikosaka; Takehiro Sasaki; Masatoshi Katabuchi; Cédric Frenette Dussault; Stéphanie Gaucherand; Ning Chen; Marie Vandewalle; Marco Antônio Batalha
How the patterns of niche occupancy vary from species-poor to species-rich communities is a fundamental question in ecology that has a central bearing on the processes that drive patterns of biodiversity. As species richness increases, habitat filtering should constrain the expansion of total niche volume, while limiting similarity should restrict the degree of niche overlap between species. Here, by explicitly incorporating intraspecific trait variability, we investigate the relationship between functional niche occupancy and species richness at the global scale. 2.We assembled 21 datasets worldwide, spanning tropical to temperate biomes and consisting of 313 plant communities representing different growth forms. We quantified three key niche occupancy components (the total functional volume, the functional overlap between species and the average functional volume per species) for each community, related each component to species richness, and compared each component to the null expectations. 3.As species richness increased, communities were more functionally diverse (an increase in total functional volume), and species overlapped more within the community (an increase in functional overlap) but did not more finely divide the functional space (no decline in average functional volume). Null model analyses provided evidence for habitat filtering (smaller total functional volume than expectation), but not for limiting similarity (larger functional overlap and larger average functional volume than expectation) as a process driving the pattern of functional niche occupancy. 4.Synthesis. Habitat filtering is a widespread process driving the pattern of functional niche occupancy across plant communities and coexisting species tend to be more functionally similar rather than more functionally specialized. Our results indicate that including intraspecific trait variability will contribute to a better understanding of the processes driving patterns of functional niche occupancy