Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Schobert is active.

Publication


Featured researches published by Christian Schobert.


Planta | 1998

Identification of immunologically related proteins in sieve-tube exudate collected from monocotyledonous and dicotyledonous plants

Christian Schobert; Lucian Baker; Judit Szederkényi; Pia Großmann; Ewald Komor; Hiroaki Hayashi; Mitsuo Chino; William J. Lucas

Abstract. The mature, functional sieve-tube system in higher plants is dependent upon protein import from the companion cells to maintain a functional long-distance transport system. Soluble proteins present within the sieve-tube lumen were investigated by analysis of sieve-tube exudates which revealed the presence of distinct sets of polypeptides in seven monocotyledonous and dicotyledonous plant species. Antibodies directed against sieve-tube exudate proteins from Ricinus communis L. demonstrated the presence of shared antigens in the phloem sap collected from Triticum aestivum L., Oryza sativa L., Yucca filamentosa L., Cucurbita maxima Duch., Robinia pseudoacacia L. and Tilia platyphyllos L. Specific antibodies were employed to identify major polypeptides. Molecular chaperones related to Rubisco-subunit-binding protein and cyclophilin, as well as ubiquitin and the redox proteins, thioredoxin h and glutaredoxin, were detected in the sieve-tube exudate of all species examined. Actin and profilin, a modulator of actin polymerization, were also present in all analyzed phloem exudates. However, some proteins were highly species-specific, e.g. cystatin, a protease-inhibitor was present in R. communis but was not detected in exudates from other species, and orthologs of the well-known squash phloem lectin, phloem protein 2, were only identified in the sieve-tube exudate of R. communis and R. pseudoacacia. These findings are discussed in terms of the likely roles played by phloem proteins in the maintenance and function of the enucleate sieve-tube system of higher plants.


Planta | 1995

Sieve-tube exudate from Ricinus communis L. seedlings contains ubiquitin and chaperones

Christian Schobert; Pia Großmann; Maren Gottschalk; Ewald Komor; Attila Pecsvaradi; Uta zur Mieden

The cut hypocotyl of Ricinus communis L. seedlings exudes phloem sap which contains a characteristic set of proteins (Sakuth et al. 1993, Planta 191, 207–213). These sieve-tube exudate proteins were probed with antibodies to highly conserved proteins, namely ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco), Rubisco subunit-binding protein, heat-shock protein (HSP 70), chaperonin GroEL and ubiquitin. Homologous proteins in the sieve-tube exudate were identified with antisera to HSP 70, Rubisco-subunit-binding protein and ubiquitin. Ribulose-1,5-bisphosphate carboxylase-oxygenase, which was present in the tissue, was not detected. Of all the cross-reactive proteins detected, ubiquitin was special because the ubiquitin-to-protein ratio in the sieve-tube exudate was higher than in both the surrounding hypocotyl and in the cotyledonary tissues. Therefore, ubiquitin features properties which favour its transfer into the sieve tubes and which might rely on efficient transport through plasmodesmata. It is assumed that chaperones and ubiquitin are needed for the maintenance of sieve-tube function, e.g. to ensure correct folding of proteins. Their possible involvement in protein translocation through plasmodesmata from companion cells to sieve tubes is discussed.


Planta | 1993

Specific proteins in the sieve-tube exudate of Ricinus communis L. seedlings: separation, characterization and in-vivo labelling

Thomas Sakuth; Christian Schobert; Attila Pecsvaradi; Arnulf Eichholz; Ewald Komor; Gabriele Orlich

Ricinus communis L. seedlings exuded pure phloem sap from the cut hypocotyl for several hours. Throughout the entire exudation period proteins were present in the phloem exudate at a constant concentration ranging from 0.11 to 0.41 mg·ml−1 depending on the culture conditions and the age of the seedlings. Manipulation of the nutrient supply at the cotyledons after removal of the endosperm did not change the protein concentration in the exudate. Comparison of sieve-tube exudate proteins (STEPs) with soluble proteins extracted from the hypocotyl and the cotyledons showed a unique abundance of small proteins in the exudate, with molecular weights ranging from 10 to 25 kDa. Bands at 18, 19 and 20 kDa were especially dominant. The proteins found transiently in the xylem exudate, which might represent proteins secreted at the wound surface, were different in pattern. Two-dimensional separation of STEPs revealed that more than 100 distinct polypeptides occurred in the sieve-tube exudate, most of them slightly acidic with isoelectric points ranging from 4 to 6 and a few basic ones around 8. [35S]Methionine fed to the cotyledons led to labelling of STEPs, demonstrating their rapid synthesis. It is concluded that there is a continuous synthesis and translocation of specific sieve-tube proteins, whose function is unknown.


Planta | 1989

Sucrose transport into the phloem of ricinus communis l. seedlings as measured by the analysis of sieve-tube sap

Jose Kallarackal; Gabriele Orlich; Christian Schobert; Ewald Komor

Careful cutting of the hypocotyl of Ricinus communis L. seedlings led to the exudation of pure sieve-tube sap for 2–3 h. This offered the possibility of testing the phloem-loading system qualitatively and quantitatively by incubating the cotyledons with different solutes of various concentrations to determine whether or not these solutes were loaded into the sieve tubes. The concentration which was achieved by loading and the time course could also be documented. This study concentrated on the loading of sucrose because it is the major naturally translocated sieve-tube compound. The sucrose concentration of sieve-tube sap was approx. 300 mM when the cotyledons were buried in the endosperm. When the cotyledons were excised from the endosperm and incubated in buffer, the sucrose concentration decreased gradually to 80–100 mM. This sucrose level was maintained for several hours by starch breakdown. Incubation of the excised cotyledons in sucrose caused the sucrose concentration in the sieve tubes to rise from 80 to 400 mM, depending on the sucrose concentration in the medium. Thus the sucrose concentration in the sieve tubes could be manipulated over a wide range. The transfer of labelled sucrose to the sieve-tube sap took 10 min; full isotope equilibration was finally reached after 2 h. An increase of K+ in the medium or in the sieve tubes did not change the sucrose concentration in the sievetube sap. Similarly the experimentally induced change of sucrose concentration in the sieve tubes did not affect the K+ concentration in the exudate. High concentrations of K+, however, strongly reduced the flow rate of exudation. Similar results were obtained with Na+ (data not shown). The minimum translocation speed in the sieve tubes in vivo was calculated from the growth increment of the seedling to be 1.03 m·h-1, a value, which on average was also obtained for the exudation system with the endosperm attached. This comparison of the in-vivo rate of phloem transport and the exudation rate from cut hypocotyls indicates that sink control of phloem transport in the seedlings of that particular age was small, if there was any at all, and that the results from the experimental exudation system were probably not falsified by removal of the sink tissues.


Planta | 1997

Cloning of the cDNA for glutaredoxin, an abundant sieve-tube exudate protein from Ricinus communis L. and characterisation of the glutathione-dependent thiol-reduction system in sieve tubes

Judit Szederkényi; Ewald Komor; Christian Schobert

Abstract. Sieve-tube exudate protein (STEP) from Ricinus communis L. seedlings consists of a characteristic set of more than 100 different polypeptides, against which a complex antiserum was raised. This antiserum cross-reacted with dominant protein species (molecular weights 10–30 kDa) present in the sieve-tube exudate and, to a lesser extent, with proteins in tissue extracts of Ricinus and a wide range of other plant species. For further elucidation of the nature of individual STEPs in the sieve tubes the anti-STEP serum was used to screen a cDNA expression library constructed from Ricinus cotyledon mRNA. Two clones that differed in the 3′ untranslated region encoded a protein of 11 kDa which showed striking homology to bacterial and eucaryotic glutaredoxin sequences. Glutaredoxin activity was confirmed for the recombinant protein after overexpression in Escherichia coli and characterised in detail in sieve-tube exudate. Michaelis Menten constants (Km) for reduced glutathione and cysteine were 2 mM and 50 μM, respectively. Besides l-cysteine, dehydroascorbate and protein disulphides were also reduced by the activity present in the sieve-tube exudate. Glutathione, which is the obligate donor of reduced thiols for glutaredoxin, was present in sieve-tube sap in millimolar concentrations (up to 3 mM) with a ratio of total to oxidised glutathione of 3:1. It is suggested that glutaredoxin and glutathione in sieve tubes prevent oxidative damage and may be involved in redox regulation of sieve-tube proteins.


Planta | 1989

The differential transport of amino acids into the phloem of ricinus communis l. seedlings as shown by the analysis of sieve-tube sap

Christian Schobert; Ewald Komor

The cotyledons of castor bean (Ricinus communis L.) act as absorption organs for amino acids, which are supplied to the medium. The analysis of the sieve-tube sap, which exudes from the cut hypocotyl, demonstrated the ability of the cotyledons to load particular amino acids into the phloem and to reject the loading of others. The sieve-tube sap of cotyledons, which were embedded in the endosperm, contained 150 mM amino acids, with 50 mM glutamine as the major amino acid, and 10–15 mM each of valine, isoleucine, lysine and arginine. Removal of the endosperm led to a drastic decline in the amino-acid content of sieve-tube sap down to 16 mM. Addition of single amino acid species to the medium increased the amino acid concentration in the sieve-tube sap in specific manner: glutamine caused the largest increase (up to 140 mM in exudate), glutamate and alanine smaller increases (up to 60 mM), and arginine the smallest. In addition, the amino acid composition of the sieve-tube sap changed, for instance, glutamine or alanine readily appeared in the sieve-tube sap upon incubation in glutamine or alanine, respectively, whereas glutamate was hardly discernible even in the case of incubation with glutamate; arginine was loaded into the sieve tubes only reluctantly. In general, glutamine and alanine accumulated four- to tenfold in the sieve tubes. The uptake of amino acids and of sucrose into the sieve tubes was interdependent: the loading of sucrose strongly reduced the amino acid concentration in the sieve-tube exudate and loading of amino acids decreased the sucrose concentration. Comparison of the concentrations of various amino acids on their way from the endosperm via the cotyledon-endosperm interface, through the cotyledons and into the sieve tubes showed that glutamine, valine, isoleucine and lysine are accumulated on this pathway, whereas glutamate and arginine are more concentrated in the cotyledons than in the sieve tubes. Obviously the phloem-loading system has a transport specificity different from that of the amino acid uptake system of the cotyledon in general and it strongly discriminates between amino acids within the cotyledons.


Plant Molecular Biology | 2000

Characterization of Ricinus communis phloem profilin, RcPRO1.

Christian Schobert; Maren Gottschalk; David R. Kovar; Christopher J. Staiger; Byun-Chun Yoo; William J. Lucas

The mature, functional sieve tube, which forms the conduit for assimilate distribution in higher plants, is dependent upon protein import from the companion cells for maintenance of the phloem long-distance translocation system. Using antibodies raised against proteins present in the sieve-tube exudate of Ricinus communis (castor bean) seedlings, a cDNA was cloned which encoded a putative profilin, termed RcPRO1. Expression and localization studies indicated that RcPRO1 mRNA encodes a phloem profilin, with some expression occurring in epidermal, cortex, pith and xylem tissue. Purified, recombinant RcPRO1 was functionally equivalent to recombinant maize profilin ZmPRO4 in a live cell nuclear displacement assay. The apparent equilibrium dissociation constant for RcPRO1 binding to plant monomeric (G-)actin was lower than the previously characterized maize profilins. Moreover, the affinity of RcPRO1 for poly-L-proline (PLP) was significantly higher than that for recombinant maize profilins. Within the sieve-tube exudate, profilin was present in 15-fold molar excess to actin. The data suggest that actin filament formation is prevented within the assimilate stream. These results are discussed in terms of the unique physiology of the phloem.


Planta | 1990

Transfer of amino acids and nitrate from the roots into the xylem of ricinus communis seedlings

Christian Schobert; Ewald Komor

The loading of amino acids and nitrate into the xylem was investigated by collection and analysis of root-pressure exudate from the cut hypocotyl stumps of seedlings of Ricinus communis L. Glutamine was found to be the dominant amino acid in the exudate and also to be the amino acid which is transferred to the xylem most rapidly and accumulated to the greatest extent. The comparison between uptake and xylem loading showed significant differences in specificity between these two transport reactions, indicating a different set of transport systems. Nitrate is transferred to the xylem at a higher relative rate than any amino acid despite the great nitrate-storage capacity of the root system. Thus the supply of nitrate to Ricinus plants leads to enhanced nitrogen allocation to the shoots.


Plant and Soil | 1988

Uptake of amino acids by plants from the soil: a comparative study with castor bean seedlings grown under natural and axenic soil conditions

Christian Schobert; Walter Köckenberger; Ewald Komor

Castor bean seedlings grown in different media (soil, quartz sand, or liquid culture) under natural or axenic conditions take up14C labelled proline when offered to the rooting medium at concentrations similar to those occuring in the soil. Most of the absorbed proline was transferred through the root into the xylem without metabolic conversion, though some conversion to glutamine and alamine occurred.It is concluded that roots successfully compete with microorganisms for free amino acids in the soil for the following reasons: (a) The initial rate of appearance of radioactivity in the xylem sap was the same in plants grown in natural or in axenic soil, and (b) the specific activity of proline in the xylem sap was approximately the same in plants grown in natural conditions and in axenic soil (even somewhat higher under natural condition).The role of soil microorganisms became evident however in long-term experiments (e.g. 5h), because the soil solution was much more rapidly depleted of labelled amino acids in natural soil than in axenic soil. Therefore after 20 hours roots grown in sterilized soil or quartz sand always contained more14C label than those grown in natural soil.It is suggested that viable roots use free amino acids from the soil and that the main flux of carbon to the rhizosphere might be in the form of organic acids.


Journal of Plant Physiology | 1993

Heterologous Expression of the H+/Hexose Cotransporter from Chlorella in Xenopus Oocytes and its Characterization with Respect to Sugar Specificity, pH and Membrane Potential

Hitoshi Aoshima; Mamoru Yamada; Norbert Sauer; Ewald Komor; Christian Schobert

Summary The cRNA transcribed from a full length clone that codes for the inducible H + /hexose cotransporter from Chlorella kessleri was injected into Xenopus oocytes. The functional expression was documented by the occurrence of inward current when D-glucose was offered to the oocytes. The fact that substitution of sodium ions by choline did not change the sugar-dependent charge flow supports the idea that the current was carried by protons. Thus, direct proof was obtained for the electrogenicity of sugar transport by the Chlorella carrier. The sugar specificity of proton flow was found to be in good agreement with the well characterized sugar transport by Chlorella cells. The K m values determined for proton flux were similar to the values found previously for transport of D-glucose and other sugars. An exception was mannose, which elicited current although it was poorly transported by Chlorella cells. Both proton gradient and membrane potential affected the proton flux. It is concluded that the heterologous expression of cloned transporters in Xenopus oocytes is not only an excellent way to identify transporter clones but also to study interactions of substrate and charge flow.

Collaboration


Dive into the Christian Schobert's collaboration.

Top Co-Authors

Avatar

Ewald Komor

University of Bayreuth

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge