Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Schudoma is active.

Publication


Featured researches published by Christian Schudoma.


Nature plants | 2015

Endogenous Arabidopsis messenger RNAs transported to distant tissues.

Christoph J. Thieme; Mónica Rojas-Triana; Ewelina Stecyk; Christian Schudoma; Wenna Zhang; Lei Yang; Miguel Miñambres; Dirk Walther; Waltraud X. Schulze; Javier Paz-Ares; Wolf-Rüdiger Scheible; Friedrich Kragler

The concept that proteins and small RNAs can move to and function in distant body parts is well established. However, non-cell-autonomy of small RNA molecules raises the question: To what extent are protein-coding messenger RNAs (mRNAs) exchanged between tissues in plants? Here we report the comprehensive identification of 2,006 genes producing mobile RNAs in Arabidopsis thaliana. The analysis of variant ecotype transcripts that were present in heterografted plants allowed the identification of mRNAs moving between various organs under normal or nutrient-limiting conditions. Most of these mobile transcripts seem to follow the phloem-dependent allocation pathway transporting sugars from photosynthetic tissues to roots via the vasculature. Notably, a high number of transcripts also move in the opposite, root-to-shoot direction and are transported to specific tissues including flowers. Proteomic data on grafted plants indicate the presence of proteins from mobile RNAs, allowing the possibility that they may be translated at their destination site. The mobility of a high number of mRNAs suggests that a postulated tissue-specific gene expression profile might not be predictive for the actual plant body part in which a transcript exerts its function.


Trends in Plant Science | 2012

Cracking the elusive alignment hypothesis: the microtubule-cellulose synthase nexus unraveled.

Martin Bringmann; Benoit Landrein; Christian Schudoma; Olivier Hamant; Marie-Theres Hauser; Staffan Persson

Directed plant cell growth is governed by deposition and alterations of cell wall components under turgor pressure. A key regulatory element of anisotropic growth, and hence cell shape, is the directional deposition of cellulose microfibrils. The microfibrils are synthesized by plasma membrane-located cellulose synthase complexes that co-align with and move along cortical microtubules. That the parallel relation between cortical microtubules and extracellular microfibrils is causal has been named the alignment hypothesis. Three recent studies revealed that the previously identified pom2 mutant codes for a large cellulose synthases interacting (CSI1) protein which also binds cortical microtubules. This review summarizes these findings, provides structure–function models and discusses the inferred mechanisms in the context of plant growth.


Nucleic Acids Research | 2010

Sequence–structure relationships in RNA loops: establishing the basis for loop homology modeling

Christian Schudoma; Patrick May; Viktoria Nikiforova; Dirk Walther

The specific function of RNA molecules frequently resides in their seemingly unstructured loop regions. We performed a systematic analysis of RNA loops extracted from experimentally determined three-dimensional structures of RNA molecules. A comprehensive loop-structure data set was created and organized into distinct clusters based on structural and sequence similarity. We detected clear evidence of the hallmark of homology present in the sequence–structure relationships in loops. Loops differing by <25% in sequence identity fold into very similar structures. Thus, our results support the application of homology modeling for RNA loop model building. We established a threshold that may guide the sequence divergence-based selection of template structures for RNA loop homology modeling. Of all possible sequences that are, under the assumption of isosteric relationships, theoretically compatible with actual sequences observed in RNA structures, only a small fraction is contained in the Rfam database of RNA sequences and classes implying that the actual RNA loop space may consist of a limited number of unique loop structures and conserved sequences. The loop-structure data sets are made available via an online database, RLooM. RLooM also offers functionalities for the modeling of RNA loop structures in support of RNA engineering and design efforts.


Journal of Plant Physiology | 2011

Use of TILLING and robotised enzyme assays to generate an allelic series of Arabidopsis thaliana mutants with altered ADP-glucose pyrophosphorylase activity.

Nadja Hädrich; Yves Gibon; Christian Schudoma; Thomas Altmann; John E. Lunn; Mark Stitt

ADP-glucose pyrophosphorylase (AGPase) catalyses the synthesis of ADP-glucose, and is a highly regulated enzyme in the pathway of starch synthesis. In Arabidopsis thaliana, the enzyme is a heterotetramer, containing two small subunits encoded by the APS1 gene and two large subunits encoded by the APL1-4 genes. TILLING (Targeting Induced Local Lesions IN Genomes) of a chemically mutagenised population of A. thaliana plants identified 33 novel mutations in the APS1 gene, including 21 missense mutations in the protein coding region. High throughput measurements using a robotised cycling assay showed that maximal AGPase activity in the aps1 mutants varied from <15 to 117% of wild type (WT), and that the kinetic properties of the enzyme were altered in several lines, indicating a role for the substituted amino acid residues in catalysis or substrate binding. These results validate the concept of using such a platform for efficient high-throughput screening of very large populations of mutants, natural accessions or introgression lines. AGPase was estimated to have a flux control coefficient of 0.20, indicating that the enzyme exerted only modest control over the rate of starch synthesis in plants grown under short day conditions (8 h light/16 h dark) with an irradiance of 150 μmol quanta m(-2)s(-1). Redox activation of the enzyme, via reduction of the intermolecular disulphide bridge between the two small subunits, was increased in several lines. This was sometimes, but not always, associated with a decrease in the abundance of the APS1 protein. In conclusion, the TILLING technique was used to generate an allelic series of aps1 mutants in A. thaliana that revealed new insights into the multi-layered regulation of AGPase. These mutants offer some advantages over the available loss-of-function mutants, e.g. adg1, for investigating the effects of subtle changes in the enzymes activity on the rate of starch synthesis.


Frontiers in Plant Science | 2012

Give It AGO: The Search for miRNA-Argonaute Sorting Signals in Arabidopsis thaliana Indicates a Relevance of Sequence Positions Other than the 5'-Position Alone

Christoph J. Thieme; Christian Schudoma; Patrick May; Dirk Walther

The specific recognition of miRNAs by Argonaute (AGO) proteins, the effector proteins of the RNA-induced silencing complex, constitutes the final step of the biogenesis of miRNAs and is crucial for their target interaction. In the genome of Arabidopsis thaliana (Ath), 10 different AGO proteins are encoded and the sorting decision, which miRNA associates with which AGO protein, was reported to depend exclusively on the identity of the 5′-sequence position of mature miRNAs. Hence, with only four different bases possible, a 5′-position-only sorting signal would not suffice to specifically target all 10 different AGOs individually or would suggest redundant AGO action. Alternatively, other and as of yet unidentified sorting signals may exist. We analyzed a dataset comprising 117 Ath-miRNAs with clear sorting preference to either AGO1, AGO2, or AGO5 as identified in co-immunoprecipitation experiments combined with sequencing. While mutual information analysis did not identify any other single position but the 5′-nucleotide to be informative for the sorting at sufficient statistical significance, significantly better than random classification results using Random Forests nonetheless suggest that additional positions and combinations thereof also carry information with regard to the AGO sorting. Positions 2, 6, 9, and 13 appear to be of particular importance. Furthermore, uracil bases at defined positions appear to be important for the sorting to AGO2 and AGO5, in particular. No predictive value was associated with miRNA length or base pair binding pattern in the miRNA:miRNA* duplex. From inspecting available AGO gene expression data in Arabidopsis, we conclude that the temporal and spatial expression profile may also contribute to the fine-tuning of miRNA sorting and function.


Functional Plant Biology | 2015

Assessment of drought tolerance and its potential yield penalty in potato

Heike Sprenger; Katharina Rudack; Christian Schudoma; Arne Neumann; Sylvia Seddig; Rolf Peters; Ellen Zuther; Joachim Kopka; Dirk K. Hincha; Dirk Walther; Karin Koehl

Climate models predict an increased likelihood of seasonal droughts for many areas of the world. Breeding for drought tolerance could be accelerated by marker-assisted selection. As a basis for marker identification, we studied the genetic variance, predictability of field performance and potential costs of tolerance in potato (Solanum tuberosum L.). Potato produces high calories per unit of water invested, but is drought-sensitive. In 14 independent pot or field trials, 34 potato cultivars were grown under optimal and reduced water supply to determine starch yield. In an artificial dataset, we tested several stress indices for their power to distinguish tolerant and sensitive genotypes independent of their yield potential. We identified the deviation of relative starch yield from the experimental median (DRYM) as the most efficient index. DRYM corresponded qualitatively to the partial least square model-based metric of drought stress tolerance in a stress effect model. The DRYM identified significant tolerance variation in the European potato cultivar population to allow tolerance breeding and marker identification. Tolerance results from pot trials correlated with those from field trials but predicted field performance worse than field growth parameters. Drought tolerance correlated negatively with yield under optimal conditions in the field. The distribution of yield data versus DRYM indicated that tolerance can be combined with average yield potentials, thus circumventing potential yield penalties in tolerance breeding.


Bioinformatics | 2010

Modeling RNA loops using sequence homology and geometric constraints

Christian Schudoma; Patrick May; Dirk Walther

Summary: RNA loop regions are essential structural elements of RNA molecules influencing both their structural and functional properties. We developed RLooM, a web application for homology-based modeling of RNA loops utilizing template structures extracted from the PDB. RLooM allows the insertion and replacement of loop structures of a desired sequence into an existing RNA structure. Furthermore, a comprehensive database of loops in RNA structures can be accessed through the web interface. Availability and Implementation: The application was implemented in Python, MySQL and Apache. A web interface to the database and loop modeling application is freely available at http://rloom.mpimp-golm.mpg.de Contact: [email protected]; [email protected]; [email protected]


Methods of Molecular Biology | 2012

Conducting molecular biomarker discovery studies in plants

Christian Schudoma; Matthias Steinfath; Heike Sprenger; Joost T. van Dongen; Dirk K. Hincha; Ellen Zuther; Peter Geigenberger; Joachim Kopka; Karin Köhl; Dirk Walther

Molecular biomarkers are molecules whose concentrations in a biological system inform about the current phenotypical state and, more importantly, may also be predictive of future phenotypic trait endpoints. The identification of biomarkers has gained much attention in targeted plant breeding since technologies have become available that measure many molecules across different levels of molecular organization and at decreasing costs. In this chapter, we outline the general strategy and workflow of conducting biomarker discovery studies. Critical aspects of study design as well as the statistical data analysis and model building will be highlighted.


Plant Methods | 2015

A bioinformatics approach to distinguish plant parasite and host transcriptomes in interface tissue by classifying RNA-Seq reads

Daisuke Ikeue; Christian Schudoma; Wenna Zhang; Yoshiyuki Ogata; Tomoaki Sakamoto; Tetsuya Kurata; Takeshi Furuhashi; Friedrich Kragler; Koh Aoki

BackgroundThe genus Cuscuta is a group of parasitic plants that are distributed world-wide. The process of parasitization starts with a Cuscuta plant coiling around the host stem. The parasite’s haustorial organs then establish a vascular connection allowing for access to the phloem content. The host and the parasite form new cellular connections, suggesting coordination of developmental and biochemical processes. Simultaneous monitoring of gene expression in the parasite’s and host’s tissues may shed light on the complex events occurring between the parasitic and host cells and may help to overcome experimental limitations (i.e. how to separate host tissue from Cuscuta tissue at the haustorial connection). A novel approach is to use bioinformatic analysis to classify sequencing reads as either belonging to the host or to the parasite and to characterize the expression patterns. Owing to the lack of a comprehensive genomic dataset from Cuscuta spp., such a classification has not been performed previously.ResultsWe first classified RNA-Seq reads from an interface region between the non-model parasitic plant Cuscuta japonica and the non-model host plant Impatiens balsamina. Without established reference sequences, we classified reads as originating from either of the plants by stepwise similarity search against de novo assembled transcript sets of C. japonica and I. balsamina, unigene sets of the same genus, and cDNA sequences of the same family. We then assembled de novo transcriptomes from the classified read sets. We assessed the quality of the classification by mapping reads to contigs of both plants, achieving a misclassification rate low enough (0.22-0.39%) to be used reliably for differential gene expression analysis. Finally, we applied our read classification method to RNA-Seq data from the interface between the non-model parasitic plant C. japonica and the model host plant Glycine max. Analysis of gene expression profiles at 5 parasitizing stages revealed differentially expressed genes from both C. japonica and G. max, and uncovered the coordination of cellular processes between the two plants.ConclusionsWe demonstrated that reliable identification of differentially expressed transcripts in undissected interface region of the parasite-host association is feasible and informative with respect to differential-expression patterns.


Nature plants | 2016

Corrigendum: Endogenous Arabidopsis messenger RNAs transported to distant tissues

Christoph J. Thieme; Mónica Rojas-Triana; Ewelina Stecyk; Christian Schudoma; Wenna Zhang; Lei Yang; Miguel Miñambres; Dirk Walther; Waltraud X. Schulze; Javier Paz-Ares; Wolf-Rüdiger Scheible; Friedrich Kragler

In the version of this Article originally published, the x-axis scale in Fig. 4b was incorrectly labelled and should have ranged from -10 to 10. This has been corrected in all versions of the Article. Corrigendum: Endogenous Arabidopsis messenger RNAs transported to distant tissues Christoph J. Thieme, Monica Rojas-Triana, Ewelina Stecyk, Christian Schudoma, Wenna Zhang, Lei Yang, Miguel Miñambres, Dirk Walther, Waltraud X. Schulze, Javier Paz-Ares, Wolf-Rüdiger Scheible and Friedrich Kragler Nature Plants 1, 15025 (2015); published 23 March 2015; corrected 21 November 2016.

Collaboration


Dive into the Christian Schudoma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge