Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Thieme is active.

Publication


Featured researches published by Christian Thieme.


Scientific Reports | 2016

Ba(1-x)Sr(x)Zn2Si2O7--A new family of materials with negative and very high thermal expansion.

Christian Thieme; Helmar Görls; Christian Rüssel

The compound BaZn2Si2O7 shows a high coefficient of thermal expansion up to a temperature of 280 °C, then a transition to a high temperature phase is observed. This high temperature phase exhibits negative thermal expansion. If Ba2+ is successively replaced by Sr2+, a new phase with a structure, similar to that of the high temperature phase of BaZn2Si2O7, forms. At the composition Ba0.8Sr0.2Zn2Si2O7, this new phase is completely stabilized. The crystal structure was determined with single crystal X-ray diffraction using the composition Ba0.6Sr0.4Zn2Si2O7, which crystallizes in the orthorhombic space group Cmcm. The negative thermal expansion is a result of motions and distortions inside the crystal lattice, especially inside the chains of ZnO4 tetrahedra. Dilatometry and high temperature X-ray powder diffraction were used to verify the negative thermal expansion. Coefficients of thermal expansion partially smaller than −10·10−6 K−1 were measured.


ACS Applied Materials & Interfaces | 2016

Thermal Expansion of Sintered Glass Ceramics in the System BaO-SrO-ZnO-SiO2 and Its Dependence on Particle Size.

Christian Thieme; Martin Schlesier; Christian Bocker; Gabriel Buzatto de Souza; Christian Rüssel

The thermal expansion behavior of sintered glass-ceramics containing high concentrations of Ba1-xSrxZn2Si2O7, a phase with very low and highly anisotropic thermal expansion behavior, was investigated. The observed phase has the crystal structure of the high-temperature phase of BaZn2Si2O7, which can be stabilized by the introduction of Sr(2+) into this phase. The high anisotropy leads to microcracking within the volume of the samples, which strongly affects the dilatometric thermal expansion. However, these cracks also have an influence on the nominal thermal expansion of the as-mentioned phase, which decreases if the cracks appear. Below a grain size of approximately 80 μm, the sintered glass-ceramics have almost no cracks and show positive thermal expansion. Hence, coefficients of thermal expansion between -5.6 and 6.5 × 10(-6) K(-1) were measured. In addition to dilatometric studies, the effect of the microstructure on the thermal expansion was also measured using in situ X-ray diffraction at temperatures up to 1000 °C.


Scientific Reports | 2016

Oriented Nucleation of both Ge-Fresnoite and Benitoite/BaGe4O9 during the Surface Crystallisation of Glass Studied by Electron Backscatter Diffraction

Wolfgang Wisniewski; Marek Patschger; Steliana Murdzheva; Christian Thieme; Christian Rüssel

Two glasses of the compositions 2 BaO - TiO2 - 2.75 GeO2 and 2 BaO – TiO2 –3.67 GeO2 (also known as BTG55) are annealed at temperatures from 680 to 970 °C to induce surface crystallization. The resulting samples are analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) including electron backscatter diffraction (EBSD). Ge-Fresnoite (Ba2TiGe2O8, BTG) is observed at the immediate surface of all samples and oriented nucleation is proven in both compositions. After a very fast kinetic selection, the crystal growth of BTG into the bulk occurs via highly oriented dendrites where the c-axes are oriented perpendicular to the surface. The growth of this oriented layer is finally blocked by dendritc BTG originating from bulk nucleation. The secondary phases BaTiGe3O9 (benitoite) and BaGe4O9 are also identified near the surface by XRD and localized by EBSD which additionally indicates orientation preferences for these phases. This behaviour is in contrast with previous reports from the Ba2TiSi2O8 as well as the Sr2TiSi2O8 systems.


Materials | 2016

Negative Thermal Expansion in Ba0.5Sr0.5Zn2SiGeO7

Christian Thieme; Christian Rüssel

Solid solutions with the composition Ba0.5Sr0.5Zn2Si2-xGexO7 and BaZn2Si2-xGexO7 were prepared with different values of x using a conventional mixed oxide route. Both compounds exhibit very different thermal expansion, which is due to the different crystal structures. Ba0.5Sr0.5Zn2Si2-xGexO7 solid solutions exhibit the structure of high-temperature BaZn2Si2O7 and show negative thermal expansion, which was proven via high-temperature X-ray diffraction. Up to around x = 1, the crystal structure remains the same. Above this value, the low-temperature phase becomes stable. The Sr-free solid solutions have the crystal structure of low-temperature BaZn2Si2O7 and show also a limited solubility of Ge. These Sr-free compositions show transitions of low- to high-temperature phases, which are shifted to higher temperatures with increasing Ge-concentration.


RSC Advances | 2017

Surface crystallization of low thermal expansion Ba0.5Sr0.5Zn2Si2O7 from an 8 BaO·8 SrO·34 ZnO·50 SiO2 glass

Michael Kracker; Liliya Vladislavova; Christian Thieme; Tilman Zscheckel; Katrin Thieme; Thomas Höche; Christian Rüssel

Thermal treatment of a glass with the composition 8 BaO·8 SrO·34 ZnO·50 SiO2 has led to the crystallization of a Ba1−xSrxZn2Si2O7 solid solution. This solid solution has a very low or even negative thermal expansion. The glass system possesses a strong tendency towards surface crystallization, while bulk nucleation is negligible. The surface crystallization behavior was characterized using differential scanning calorimetry, X-ray diffraction, optical microscopy, and scanning electron microscopy including electron backscatter diffraction. The observed morphology strongly depends on the type of surface pretreatment. Two different surface qualities were compared: a polished surface and a surface obtained by cutting. The as-cut surface shows a significantly enhanced nucleation rate, which leads to smaller crystals caused by a growth selection near to the surface. The crystal orientation related to the inward growth starting from the surface was successfully investigated by EBSD, for the first time, using a recently reported crystal structure. The crystals show a preferred orientation of the c-axis perpendicular to the surface; this has a significant effect on the crack formation.


CrystEngComm | 2018

Oriented surface nucleation and crystal growth in a 18BaO·22CaO·60SiO2 mol% glass used for SOFC seals

Wolfgang Wisniewski; Christian Thieme; Ralf Müller; Stefan Reinsch; Sonja-M. Groß-Barsnick; Christian Rüssel

A glass of the composition 37BaO·16CaO·47SiO2 wt% produced on an industrial scale is crystallized at 970 °C for times ranging from 15 min to 2 h. The crystallization at the immediate surface as well as the crystal growth into the bulk are analyzed using scanning electron microscopy (SEM) including energy dispersive X-ray spectroscopy (EDXS) and electron backscatter diffraction (EBSD) as well as X-ray diffraction in the Θ–2Θ setup (XRD). The immediate surface shows the oriented nucleation of walstromite as well as the formation of wollastonite and an unknown phase of the composition BaCaSi3O8. All three phases also grow into the bulk where walstromite ultimately dominates the kinetic selection and grows throughout the bulk due to a lack of bulk nucleation. Walstromite shows systematic orientation changes as well as twinning during growth. A critical analysis of the XRD-patterns acquired from various crystallized samples indicates that their evaluation is problematic and that phases detected by XRD in this system should be verified by another method such as EDXS.


Scientific Reports | 2017

Variable thermal expansion of glass-ceramics containing Ba 1−x Sr x Zn 2 Si 2 O 7

Christian Thieme; Martin Schlesier; Eze Oji Dike; Christian Rüssel

Up to now, the thermal expansion behavior of multiphase glass-ceramics cannot be predicted reliably because of the nescience about the formation of the type and concentration of crystalline phases. In the system BaO-SrO-ZnO-SiO2, recently a new phase based on Ba1−xSrxZn2Si2O7 solid solutions was found, which exhibits unexpected low and highly anisotropic thermal expansion, which can be used for an adjustment of the thermal expansion properties. In the case of sealing materials for high-temperature reactors, the formation of this phase should be avoided. Hence, in this manuscript the concentration thresholds in which these solid solutions precipitate from glasses were determined. The phase analysis was correlated with the thermal expansion behavior of the glass-ceramics. Depending on the Ba/Sr-ratio of the glasses and the considered temperature range, the coefficients of thermal expansion of the glass-ceramics vary between 19.4·10−6 K−1 and 4.8·10−6 K−1. The concentration thresholds in which the as mentioned phases form via crystallization of glasses differ strongly from the literature values obtained via conventional ceramic mixed oxide route.


RSC Advances | 2018

Redox effects and formation of gold nanoparticles for the nucleation of low thermal expansion phases from BaO/SrO/ZnO/SiO2 glasses

Michael Kracker; Christian Thieme; Katrin Thieme; Christian Patzig; Lutz Berthold; Thomas Höche; Christian Rüssel

Glasses in the system BaO/SrO/ZnO/SiO2 containing 0.01 and 0.1 mol% gold were used to study the formation of gold nanoparticles with the aim to use them as nucleation agents. In order to promote gold clustering, the glasses were additionally doped with 0.5 mol% Sb2O3. Depending on the heat treatment schedule, Au particle sizes were in the range from 6 to above 50 nm. In contrast to many other gold ruby glass systems, the clustering is completely prevented by the absence of antimony; then the glasses remain colorless. Surprisingly, at higher temperatures, a re-dissolution of gold clusters was also observed, which now allows the formulation of a more comprehensive model concerning the redox and clustering behavior. This growth model is completed by the fact that a high gold concentration enables the stabilization of much smaller Au clusters. Mie theory with the aid of quantum confined size-dependent dielectric functions was successfully used to describe the optical behavior of the gold nanoparticles also for sizes below 10 nm. These results were confirmed using high resolution scanning transmission electron microscopy, including energy dispersive X-ray spectroscopy. It could also be shown that small gold particles up to a size of 50 nm are not effective as nucleating agents.


CrystEngComm | 2018

WO3 as a nucleating agent for BaO/SrO/ZnO/SiO2 glasses – experiments and simulations

Christian Thieme; Andreas Erlebach; Christian Patzig; Katrin Thieme; Marek Sierka; Thomas Höche; Christian Rüssel

Recently, it has been shown that the Ba1−xSrxZn2Si2O7 crystal phase has a negative coefficient of thermal expansion. However, technological applications of this material as low thermal expansion glass ceramics are limited by the undesired surface crystallization of the corresponding glass. Surface nucleation, however, can be turned into bulk nucleation by adding nucleating agents. Here, glasses in the base system BaO–SrO–ZnO–SiO2 with small additions of ZrO2 and WO3 were synthesized and their crystallization behavior was investigated using thermal analysis, X-ray diffraction, electron microscopy, and density functional theory simulations. The addition of WO3 leads to the formation of volume crystals with a scheelite crystal structure (Ba1−xSrxWO4) in high number density. The limited incorporation of Si4+ ions into these crystals is discussed. Possible crystal lattice sites for Si4+ were located by density functional theory simulations. In a much lower number density, crystals with a crystal structure similar to the high-temperature polymorph of BaZn2Si2O7 and the Ba1−xSrxZn2Si2O7 composition crystallize as well. These crystals can reach a larger size than the scheelite crystals that occur in parallel. The overall microstructure is thus formed by small dendritic crystals with a scheelite structure and huge Ba1−xSrxZn2Si2O7 crystals. Both of them seem to grow independently of each other. In spite of the high anisotropy of both phases, the microstructure is revealed to be free of cracks.


Journal of Solid State Chemistry | 2013

BaZn{sub 2}Si{sub 2}O{sub 7} and the solid solution series BaZn{sub 2−x}Co{sub x}Si{sub 2}O{sub 7} (0

Marita Kerstan; Christian Thieme; Matthias Grosch; Matthias Müller

For sealing of solid oxide fuel cells, glasses from which crystalline phases with high coefficient of thermal expansion (CTE) can be crystallized are required. In this paper, a new solid solution series BaZn{sub 2−x}Co{sub x}Si{sub 2}O{sub 7} (0

Collaboration


Dive into the Christian Thieme's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge