Christian Thies
RWTH Aachen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Thies.
Medical Imaging 2003: PACS and Integrated Medical Information Systems: Design and Evaluation | 2003
Thomas Martin Lehmann; Mark Oliver Güld; Christian Thies; Benedikt Fischer; Daniel Keysers; Michael Kohnen; Henning Schubert; Berthold B. Wein
Picture archiving and communication systems (PACS) aim to efficiently provide the radiologists with all images in a suitable quality for diagnosis. Modern standards for digital imaging and communication in medicine (DICOM) comprise alphanumerical descriptions of study, patient, and technical parameters. Currently, this is the only information used to select relevant images within PACS. Since textual descriptions insufficiently describe the great variety of details in medical images, content-based image retrieval (CBIR) is expected to have a strong impact when integrated into PACS. However, existing CBIR approaches usually are limited to a distinct modality, organ, or diagnostic study. In this state-of-the-art report, we present first results implementing a general approach to content-based image retrieval in medical applications (IRMA) and discuss its integration into PACS environments. Usually, a PACS consists of a DICOM image server and several DICOM-compliant workstations, which are used by radiologists for reading the images and reporting the findings. Basic IRMA components are the relational database, the scheduler, and the web server, which all may be installed on the DICOM image server, and the IRMA daemons running on distributed machines, e.g., the radiologists’ workstations. These workstations can also host the web-based front-ends of IRMA applications. Integrating CBIR and PACS, a special focus is put on (a) location and access transparency for data, methods, and experiments, (b) replication transparency for methods in development, (c) concurrency transparency for job processing and feature extraction, (d) system transparency at method implementation time, and (e) job distribution transparency when issuing a query. Transparent integration will have a certain impact on diagnostic quality supporting both evidence-based medicine and case-based reasoning.
International Journal of Medical Informatics | 2007
Mark Oliver Güld; Christian Thies; Benedikt Fischer; Thomas Martin Lehmann
This work presents mechanisms to support the development and installation of content-based image retrieval in medical applications (IRMA). A strict separation of feature extraction, feature storage, feature comparison, and the user interfaces is suggested. The concept and implementation of a system following these guidelines is described. The system allows to reuse implemented components in different retrieval algorithms, which improves software quality, shortens the development cycle for applications, and allows to establish standardized end-user interfaces.
cross language evaluation forum | 2005
Mark Oliver Güld; Christian Thies; Benedikt Fischer; Thomas Martin Lehmann
A combination of several classifiers using global features for the content description of medical images is proposed. Beside well known texture histogram features, downscaled representations of the original images are used, which preserve spatial information and utilize distance measures which are robust with regard to common variations in radiation dose, translation, and local deformation. These features were evaluated for the annotation task and the retrieval task in ImageCLEF 2005 without using additional textual information or query refinement mechanisms. For the annotation task, a categorization rate of 86.7% was obtained, which ranks second among all submissions. When applied in the retrieval task, the image content descriptors yielded a mean average precision (MAP) of 0.0751, which is rank 14 of 28 submitted runs. As the image deformation model is not fit for interactive retrieval tasks, two mechanisms are evaluated with regard to the trade-off between loss of accuracy and speed increase: hierarchical filtering and prototype selection.
Medical Imaging 2005: Image Processing | 2005
Thomas Martin Lehmann; Daniel Beier; Christian Thies; Thomas Seidl
Segmentation of medical images is fundamental for many high-level applications. Unsupervised techniques such as region growing or merging allow automated processing of large data amounts. The regions are usually described by a mean feature vector, and the merging decisions are based on the Euclidean distance. This kind of similarity model is strictly local, since the feature vector of each region is calculated without evaluating the regions surrounding. Therefore, region merging often fails to extract visually comprehensible and anatomically relevant regions. In our approach, the local model is extended. Regional similarity is calculated for a pair of adjacent regions, e.g. considering the contrast along their common border. Global similarity components are obtained by analyzing the entire image partitioning before and after a hypothetical merge. Hierarchical similarities are derived from the iteration history. Local, regional, global, and hierarchical components are combined task-specifically guiding the iterative region merging process. Starting with an initial watershed segmentation, the process terminates when the entire image is represented as a single region. A complete segmentation takes only a few seconds. Our approach is evaluated contextually on plain radiographs that display human hands acquired for bone age determination. Region merging based on a local model fails to detect most bones, while a correct localization and delineation is obtained with the combined model. A gold standard is computed from ten manual segmentations of each radiograph to evaluate the quality of delineation. The relative error of labeled pixels is 15.7%, which is slightly more than the mean error of the ten manual references to the gold standard (12%). The flexible and powerful similarity model can be adopted to many other segmentation tasks in medical imaging.
cross language evaluation forum | 2004
Christian Thies; Mark Oliver Güld; Benedikt Fischer; Thomas Martin Lehmann
Recent research has suggested that there is no general similarity measure, which can be applied on arbitrary databases without any parameterization. Hence, the optimal combination of similarity measures and parameters must be identified for each new image repository. This optimization loop is time consuming and depends on the experience of the designer as well as the knowledge of the medical expert. It would be useful if results that have been obtained for one data set can be transferred to another without extensive re-design. This transfer is vital if content-based image retrieval is integrated into complex environments such as picture archiving and communication systems. The image retrieval in medical applications (IRMA) project defines a framework that strictly separates data administration and application logic. This permits an efficient transfer of the data abstraction of one database on another without re-designing the software. In the ImageCLEF competition, the query performance was evaluated on the CasImage data set without optimization of the feature combination successfully applied to the IRMA corpus. IRMA only makes use of basic features obtained from grey-value representations of the images without additional textual annotations. The results indicate that transfer of parameterization is possible without time consuming parameter adaption and significant loss of retrieval quality.
Medical Imaging 2004: Image Processing | 2004
Benedikt Fischer; Christian Thies; Mark Oliver Güld; Thomas Martin Lehmann
Content-based image retrieval requires a formal description of visual information. In medical applications, all relevant biological objects have to be represented by this description. Although color as the primary feature has proven successful in publicly available retrieval systems of general purpose, this description is not applicable to most medical images. Additionally, it has been shown that global features characterizing the whole image do not lead to acceptable results in the medical context or that they are only suitable for specific applications. For a general purpose content-based comparison of medical images, local, i.e. regional features that are collected on multiple scales must be used. A hierarchical attributed region adjacency graph (HARAG) provides such a representation and transfers image comparison to graph matching. However, building a HARAG from an image requires a restriction in size to be computationally feasible while at the same time all visually plausible information must be preserved. For this purpose, mechanisms for the reduction of the graph size are presented. Even with a reduced graph, the problem of graph matching remains NP-complete. In this paper, the Similarity Flooding approach and Hopfield-style neural networks are adapted from the graph matching community to the needs of HARAG comparison. Based on synthetic image material build from simple geometric objects, all visually similar regions were matched accordingly showing the frameworks general applicability to content-based image retrieval of medical images.
Medical Imaging 2003: Image Processing | 2003
Christian Thies; Adam Malik; Daniel Keysers; Michael Kohnen; Benedikt Fischer; Thomas Martin Lehmann
In this paper we describe the construction of hierarchical feature clustering and show how to overcome general problems of region growing algorithms such as seed point selection and processing order. Access to medical knowledge inherent in medical image databases requires content-based descriptions to allow non-textual retrieval, e.g., for comparison, statistical inquiries, or education. Due to varying medical context and questions, data structures for image description must provide all visually perceivable regions and their topological relationships, which poses one of the major problems for content extraction. In medical applications main criteria for segmenting images are local features such as texture, shape, intensity extrema, or gray values. For this new approach, these features are computed pixel-based and neighboring pixels are merged if the Euclidean distance of corresponding feature vectors is below a threshold. Thus, the planar adjacency of clusters representing connected image partitions is preserved. A cluster hierarchy is obtained by iterating and recording the adjacency merging. The resulting inclusion and neighborhood relations of the regions form a hierarchical region adjacency graph. This graph represents a multiscale image decomposition and therefore an extensive content description. It is examined with respect to application in daily routine by testing invariance against transformation, run time behavior, and visual quality For retrieval purposes, a graph can be matched with graphs of other images, where the quality of the matching describes the similarity of the images.
visual communications and image processing | 2003
Mark Oliver Gueld; Christian Thies; Benedikt Fischer; Daniel Keysers; Berthold B. Wein; Thomas Martin Lehmann
We describe a platform for the implementation of a system for content-based image retrieval in medical applications (IRMA). To cope with the constantly evolving medical knowledge, the platform offers a flexible feature model to store and uniformly access all feature types required within a multi-step retrieval approach. A structured generation history for each feature allows the automatic identification and re-use of already computed features. The platform uses directed acyclic graphs composed of processing steps and control elements to model arbitrary retrieval algorithms. This visually intuitive, data-flow oriented representation vastly improves the interdisciplinary communication between computer scientists and physicians during the development of new retrieval algorithms. The execution of the graphs is fully automated within the platform. Each processing step is modeled as a feature transformation. Due to a high degree of system transparency, both the implementation and the evaluation of retrieval algorithms are accelerated significantly. The platform uses a client-server architecture consisting of a central database, a central job scheduler, instances of a daemon service, and clients which embed user-implemented feature ansformations. Automatically distributed batch processing and distributed feature storage enable the cost-efficient use of an existing workstation cluster.
Medical Imaging 2006: Image Processing | 2006
Christian Thies; Marcel Schmidt Borreda; Thomas Seidl; Thomas Martin Lehmann
Multiscale analysis provides a complete hierarchical partitioning of images into visually plausible regions. Each of them is formally characterized by a feature vector describing shape, texture and scale properties. Consequently, object extraction becomes a classification of the feature vectors. Classifiers are trained by relevant and irrelevant regions labeled as object and remaining partitions, respectively. A trained classifier is applicable to yet uncategorized partitionings to identify the corresponding regions classes. Such an approach enables retrieval of a-priori unknown objects within a point-and-click interface. In this work, the classification pipeline consists of a framework for data selection, feature selection, classifier training, classification of testing data, and evaluation. According to the no-free-lunch-theorem of supervised learning, the appropriate classification pipeline is determined experimentally. Therefore, each of the steps is varied by state-of-the-art methods and the respective classification quality is measured. Selection of training data from the ground truth is supported by bootstrapping, variance pooling, virtual training data, and cross validation. Feature selection for dimension reduction is performed by linear discriminant analysis, principal component analysis, and greedy selection. Competing classifiers are k-nearest-neighbor, Bayesian classifier, and the support vector machine. Quality is measured by precision and recall to reflect the retrieval task. A set of 105 hand radiographs from clinical routine serves as ground truth, where the metacarpal bones have been labeled manually. In total, 368 out of 39.017 regions are identified as relevant. In initial experiments for feature selection with the support vector machine have been obtained recall, precision and F-measure of 0.58, 0.67, and 0,62, respectively.
cross language evaluation forum | 2006
Mark Oliver Güld; Christian Thies; Benedikt Fischer; Thomas Martin Deserno
The ImageCLEF 2006 medical automatic annotation task encompasses 11,000 images from 116 categories, compared to 57 categories for 10,000 images of the similar task in 2005. As a baseline for comparison, a run using the same classifiers with the identical parameterization as in 2005 is submitted. In addition, the parameterization of the classifier was optimized according to the 9,000/1,000 split of the 2006 training data. In particular, texture-based classifiers are combined in parallel with classifiers, which use spatial intensity information to model common variabilities among medical images. However, all individual classifiers are based on global features, i.e. one feature vector describes the entire image. The parameterization from 2005 yields an error rate of 21.7%, which ranks 13th among the 28 submissions. The optimized classifier yields 21.4% error rate (rank 12), which is insignificantly better.