Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Y. Mardin is active.

Publication


Featured researches published by Christian Y. Mardin.


Journal of Glaucoma | 2010

Retinal nerve fiber layer thickness in normals measured by spectral domain OCT.

Delia Bendschneider; Ralf P. Tornow; Folkert K. Horn; Robert Laemmer; Christopher W. Roessler; Anselm Juenemann; Friedrich E. Kruse; Christian Y. Mardin

PurposeTo determine normal values for peripapillary retinal nerve fiber layer thickness (RNFL) measured by spectral domain Optical Coherence Tomography (SOCT) in healthy white adults and to examine the relationship of RNFL with age, gender, and clinical variables. Patients and MethodsThe peripapillary RNFL of 170 healthy patients (96 males and 74 females, age 20 to 78 y) was imaged with a high-resolution SOCT (Spectralis HRA+OCT, Heidelberg Engineering) in an observational cross-sectional study. RNFL thickness was measured around the optic nerve head using 16 automatically averaged, consecutive circular B-scans with 3.4-mm diameter. The automatically segmented RNFL thickness was divided into 32 segments (11.25 degrees each). One randomly selected eye per subject entered the study. ResultsMean RNFL thickness in the study population was 97.2±9.7 &mgr;m. Mean RNFL thickness was significantly negatively correlated with age (r=−0.214, P=0.005), mean RNFL decrease per decade was 1.90 &mgr;m. As age dependency was different in different segments, age-correction of RNFL values was made for all segments separately. Age-adjusted RNFL thickness showed a significant correlation with axial length (r=−0.391, P=0.001) and with refractive error (r=0.396, P<0.001), but not with disc size (r=0.124). ConclusionsNormal RNFL results with SOCT are comparable to those reported with time-domain OCT. In accordance with the literature on other devices, RNFL thickness measured with SOCT was significantly correlated with age and axial length. For creating a normative database of SOCT RNFL values have to be age adjusted.


Medical Image Analysis | 2005

Automated segmentation of the optic nerve head for diagnosis of glaucoma

Radim Chrástek; Matthias Wolf; Klaus Donath; Heinrich Niemann; Dietrich Paulus; Torsten Hothorn; Berthold Lausen; Robert Lämmer; Christian Y. Mardin; Georg Michelson

Glaucoma is the second most common cause of blindness worldwide. Low awareness and high costs connected to glaucoma are reasons to improve methods of screening and therapy. A well-established method for diagnosis of glaucoma is the examination of the optic nerve head using scanning-laser-tomography. This system acquires and analyzes the surface topography of the optic nerve head. The analysis that leads to a diagnosis of the disease depends on prior manual outlining of the optic nerve head by an experienced ophthalmologist. Our contribution presents a method for optic nerve head segmentation and its validation. The method is based on morphological operations, Hough transform, and an anchored active contour model. The results were validated by comparing the performance of different classifiers on data from a case-control study with contours of the optic nerve head manually outlined by an experienced ophthalmologist. We achieved the following results with respect to glaucoma diagnosis: linear discriminant analysis with 27.7% estimated error rate for automated segmentation (aut) and 26.8% estimated error rate for manual segmentation (man), classification trees with 25.2% (aut) and 22.0% (man) and bootstrap aggregation with 22.2% (aut) and 13.4% (man). It could thus be shown that our approach is suitable for automated diagnosis and screening of glaucoma.


PLOS Genetics | 2012

Common Genetic Determinants of Intraocular Pressure and Primary Open-Angle Glaucoma

Leonieke M. E. van Koolwijk; Wishal D. Ramdas; M. Kamran Ikram; Nomdo M. Jansonius; Francesca Pasutto; Pirro G. Hysi; Stuart MacGregor; Sarah F. Janssen; Alex W. Hewitt; Ananth C. Viswanathan; Jacoline B. ten Brink; S. Mohsen Hosseini; Najaf Amin; Dominiek D. G. Despriet; Jacqueline J. M. Willemse-Assink; Rogier Kramer; Fernando Rivadeneira; Maksim Struchalin; Yurii S. Aulchenko; Nicole Weisschuh; Matthias Zenkel; Christian Y. Mardin; Eugen Gramer; Ulrich Welge-Lüssen; Grant W. Montgomery; Francis Carbonaro; Terri L. Young; Céline Bellenguez; P. McGuffin; Paul J. Foster

Intraocular pressure (IOP) is a highly heritable risk factor for primary open-angle glaucoma and is the only target for current glaucoma therapy. The genetic factors which determine IOP are largely unknown. We performed a genome-wide association study for IOP in 11,972 participants from 4 independent population-based studies in The Netherlands. We replicated our findings in 7,482 participants from 4 additional cohorts from the UK, Australia, Canada, and the Wellcome Trust Case-Control Consortium 2/Blue Mountains Eye Study. IOP was significantly associated with rs11656696, located in GAS7 at 17p13.1 (p = 1.4×10−8), and with rs7555523, located in TMCO1 at 1q24.1 (p = 1.6×10−8). In a meta-analysis of 4 case-control studies (total N = 1,432 glaucoma cases), both variants also showed evidence for association with glaucoma (p = 2.4×10−2 for rs11656696 and p = 9.1×10−4 for rs7555523). GAS7 and TMCO1 are highly expressed in the ciliary body and trabecular meshwork as well as in the lamina cribrosa, optic nerve, and retina. Both genes functionally interact with known glaucoma disease genes. These data suggest that we have identified two clinically relevant genes involved in IOP regulation.


Human Molecular Genetics | 2011

Common genetic variants associated with open-angle glaucoma

Wishal D. Ramdas; Leonieke M. E. van Koolwijk; Hans G. Lemij; Francesca Pasutto; Angela J. Cree; Gudmar Thorleifsson; Sarah F. Janssen; ten Brink Jacoline; Najaf Amin; Fernando Rivadeneira; Roger C. W. Wolfs; G. Bragi Walters; Fridbert Jonasson; Nicole Weisschuh; Christian Y. Mardin; Jane Gibson; Richard H.C. Zegers; Albert Hofman; Paulus T. V. M. de Jong; André G. Uitterlinden; Ben A. Oostra; Unnur Thorsteinsdottir; Eugen Gramer; Ulrich C. Welgen-Lüßen; James F. Kirwan; Arthur A. B. Bergen; André Reis; Kari Stefansson; Andrew J. Lotery; Johannes R. Vingerling

Open-angle glaucoma (glaucoma) is a major eye disorder characterized by optic disc pathology. Recent genome-wide association studies identified new loci associated with clinically relevant optic disc parameters, such as the optic disc area and vertical cup-disc ratio (VCDR). We examined to what extent these loci are involved in glaucoma. The loci studied include ATOH7, CDC7/TGFBR3 and SALL1 for optic disc area, and CDKN2B, SIX1, SCYL1/LTBP3, CHEK2, ATOH7 and DCLK1 for VCDR. We performed a meta-analysis using data from six independent studies including: the Rotterdam Study (n= 5736), Genetic Research in Isolated Populations combined with Erasmus Rucphen Family study (n= 1750), Amsterdam Glaucoma Study (n= 296) and cohorts from Erlangen and Tübingen (n= 1363), Southampton (n= 702) and deCODE (n= 36 151) resulting in a total of 3161 glaucoma cases and 42 837 controls. Of the eight loci, we found significant evidence (P= 1.41 × 10(-8)) for the association of CDKN2B with glaucoma [odds ratio (OR) for those homozygous for the risk allele: 0.76; 95% confidence interval (CI): 0.70-0.84], for the role of ATOH7 (OR: 1.28; 95% CI: 1.12-1.47) and for SIX1 (OR: 1.20; 95% CI: 1.10-1.31) when adjusting for the number of tested loci. Furthermore, there was a borderline significant association of CDC7/TGFBR3 and SALL1 (both P= 0.04) with glaucoma. In conclusion, we found consistent evidence for three common variants (CDKN2B, ATOH7 and SIX1) significantly associated with glaucoma. These findings may shed new light on the pathophysiological protein pathways leading to glaucoma, and point to pathways involved in the growth and development of the optic nerve.


American Journal of Human Genetics | 2009

Heterozygous NTF4 mutations impairing neurotrophin-4 signaling in patients with primary open-angle glaucoma.

Francesca Pasutto; Tomoya Matsumoto; Christian Y. Mardin; Heinrich Sticht; Johann Helmut Brandstätter; Karin Michels-Rautenstrauss; Nicole Weisschuh; Eugen Gramer; Wishal D. Ramdas; Leonieke M. E. van Koolwijk; C. C. W. Klaver; Johannes R. Vingerling; Bernhard H. F. Weber; Friedrich E. Kruse; Bernd Rautenstrauss; Yves-Alain Barde; André Reis

Glaucoma, a main cause of blindness in the developed world, is characterized by progressive degeneration of retinal ganglion cells (RGCs), resulting in irreversible loss of vision. Although members of the neurotrophin gene family in various species are known to support the survival of numerous neuronal populations, including RGCs, it is less clear whether they are also required for survival and maintenance of adult neurons in humans. Here, we report seven different heterozygous mutations in the Neurotrophin-4 (NTF4) gene accounting for about 1.7% of primary open-angle glaucoma patients of European origin. Molecular modeling predicted a decreased affinity of neurotrophin 4 protein (NT-4) mutants with its specific tyrosine kinase receptor B (TrkB). Expression of recombinant NT-4 carrying the most frequent mutation was demonstrated to lead to decreased activation of TrkB. These findings suggest a pathway in the pathophysiology of glaucoma through loss of neurotrophic function and may eventually open the possibility of using ligands activating TrkB to prevent the progression of the disease.


Investigative Ophthalmology & Visual Science | 2008

Association of LOXL1 Common Sequence Variants in German and Italian Patients with Pseudoexfoliation Syndrome and Pseudoexfoliation Glaucoma

Francesca Pasutto; Mandy Krumbiegel; Christian Y. Mardin; Daniela Paoli; Robert Lämmer; Bernhard H. F. Weber; Friedrich E. Kruse; Ursula Schlötzer-Schrehardt; André Reis

PURPOSE Three common sequence variants in the lysyl oxidase-like 1 (LOXL1) gene were recently associated with both pseudoexfoliation (PEX) and pseudoexfoliation glaucoma (PEXG) in populations from Iceland and Sweden. In this study, the genetic association of these variants was investigated in patients with PEX or PEXG of German and Italian descent. METHODS The three LOXL1 single-nucleotide polymorphisms (SNPs), one intronic (rs2165241) and two nonsynonymous coding SNPs (rs1048661: R141L and rs3825942: G153D) were genotyped in a total of 726 unrelated patients with PEX or PEXG (517 Germans and 209 Italians) and 418 healthy subjects who had normal findings in repeated ophthalmic examinations, and a genetic association study was performed. RESULTS Strong association with the three LOXL1 common sequence variants was seen in both the PEX and PEXG patient groups independent of their geographic origin (rs2165241, combined OR = 3.42, P = 1.28 x 10(-40); rs1048661, OR = 2.43, P = 2.90 x 10(-19); and rs3825942, OR = 4.87, P = 8.22 x 10(-23)). Similarly, the common frequent haplotype (G-G) composed of the two coding SNPs (rs1048661 and rs3825942) was strongly associated in PEX and PEXG cohorts of both populations with the disease (combined OR = 3.58, P = 5.21x 10(-43)). CONCLUSIONS Genetic variants in LOXL1 confer risk to PEX in German and Italian populations, independent of the presence of secondary glaucoma, confirming findings in patients from Northern Europe.


British Journal of Ophthalmology | 1999

Preperimetric glaucoma diagnosis by confocal scanning laser tomography of the optic disc

Christian Y. Mardin; Folkert K. Horn; Jost B. Jonas; Wido M. Budde

AIM To evaluate the ability of confocal scanning laser tomography of the optic nerve head to detect glaucomatous optic nerve damage in ocular hypertensive eyes without visual field defects. METHODS The study included 50 normal subjects, 61 glaucoma patients with glaucomatous changes in the optic disc and visual field, and 102 “preperimetric” patients with increased intraocular pressure, normal visual fields, and glaucomatous appearance of the optic disc as evaluated on colour stereo optic disc photographs. For all individuals, confocal scanning laser tomographs of the optic nerve head were taken using the Heidelberg retina tomograph (HRT; software 2.01). RESULTS Almost all investigated HRT variables varied significantly (p<0.05) between the normal eyes and preperimetric glaucoma eyes with pronounced overlap between the two study groups. Corresponding to the overlap, sensitivity and specificity values were relatively low when HRT variables were taken to differentiate between normal and preperimetric glaucoma eyes. At a given specificity of 95% highest sensitivities were found for the variables “rim area in the superior disc sector” (24.8%), “nerve fibre layer thickness in the inferior disc sector” (26.5%), and “rim volume in the superior disc sector” (25.5%). A multivariate approach increased sensitivity to 42.2% at a given specificity of 95%. For the glaucoma group highest sensitivity values were reached by rim volume in the superior disc sector (73.8%) and rim area (72.1%); the multivariate approach reached 83.6%. CONCLUSIONS Owing to pronounced overlapping between the groups, confocal scanning laser tomography of the optic nerve head has relatively low diagnostic power to differentiate between normal eyes and preperimetric glaucoma eyes. One of the reasons may be the biological interindividual variability of quantitative optic disc variables.


Biomedical Optics Express | 2010

Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients

Markus A. Mayer; Joachim Hornegger; Christian Y. Mardin; Ralf P. Tornow

Automated measurements of the retinal nerve fiber layer thickness on circular OCT B-Scans provide physicians additional parameters for glaucoma diagnosis. We propose a novel retinal nerve fiber layer segmentation algorithm for frequency domain data that can be applied on scans from both normal healthy subjects, as well as glaucoma patients, using the same set of parameters. In addition, the algorithm remains almost unaffected by image quality. The main part of the segmentation process is based on the minimization of an energy function consisting of gradient and local smoothing terms. A quantitative evaluation comparing the automated segmentation results to manually corrected segmentations from three reviewers is performed. A total of 72 scans from glaucoma patients and 132 scans from normal subjects, all from different persons, composed the database for the evaluation of the segmentation algorithm. A mean absolute error per A-Scan of 2.9 µm was achieved on glaucomatous eyes, and 3.6 µm on healthy eyes. The mean absolute segmentation error over all A-Scans lies below 10 µm on 95.1% of the images. Thus our approach provides a reliable tool for extracting diagnostic relevant parameters from OCT B-Scans for glaucoma diagnosis.


Investigative Ophthalmology & Visual Science | 2009

Correlation between Local Glaucomatous Visual Field Defects and Loss of Nerve Fiber Layer Thickness Measured with Polarimetry and Spectral Domain OCT

Folkert K. Horn; Christian Y. Mardin; Robert Laemmer; D. Baleanu; A. G. M. Juenemann; Friedrich E. Kruse; Ralf P. Tornow

PURPOSE To study the correlation between local perimetric field defects and glaucoma-induced thickness reduction of the nerve layer measured in the peripapillary area with scanning laser polarimetry (SLP) and spectral domain optical coherence tomography (SOCT) and to compare the results with those of a theoretical model. METHODS The thickness of the retinal nerve fiber layer was determined in 32 sectors (11.25 degrees each) by using SLP with variable cornea compensation (GDxVCC; Laser Diagnostics, San Diego, CA) and the newly introduced high-resolution SOCT (Spectralis; Heidelberg Engineering, Heidelberg, Germany). Eighty-eight healthy subjects served as control subjects, to determine the thickness deviation in patients with glaucoma. The relationship between glaucomatous nerve fiber reduction and visual field losses was calculated in six nerve fiber bundle-related areas. Sixty-four patients at different stages of open-angle glaucoma and 26 patients with ocular hypertension underwent perimetry (Octopus G1; Haag-Streit, Köniz, Switzerland) and measurements with the two morphometric techniques. RESULTS Sector-shaped analyses between local perimetric losses and reduction of the retinal nerve fiber layer thickness showed a significant association for corresponding areas except for the central visual field in SLP. Correlation coefficients were highest in the area of the nasal inferior visual field (SOCT, -0.81; SLP, -0.57). A linear model describes the association between structural and functional damage. CONCLUSIONS Localized perimetric defects can be explained by reduced nerve fiber layer thickness. The data indicate that the present SOCT is useful for determining the functional-structural relationship in peripapillary areas and that association between perimetric defects and corresponding nerve fiber losses is stronger for SOCT than for the present SLP. (ClinicalTrials.gov number, NCT00494923.).


Human Genetics | 1998

Juvenile open angle glaucoma: fine mapping of the TIGR gene to 1q24.3-q25.2 and mutation analysis.

Karin Michels-Rautenstrauss; Christian Y. Mardin; Wido M. Budde; Thomas Liehr; Jon R. Polansky; Thai Nguyen; Vincent Timmerman; C. Van Broeckhoven; Gottfried O. H. Naumann; R. A. Pfeiffer; Bernd Rautenstrauss

Abstract Autosomal dominant juvenile open angle glaucoma (JOAG) is an early-onset form of primary open angle glaucoma (POAG), which has been linked to chromosome 1q21–q31. Recently, mutations in the trabecular meshwork inducible glucocorticoid response gene (TIGR), one of the candidate genes mapped in this region, were identified in glaucoma patients of several families. We screened for mutations of the TIGR gene in two German families with JOAG and in 100 unselected sporadic cases of POAG. In the first family we identified a Pro370Leu mutation and in the second family a Gly367Arg mutation cosegregating with the glaucoma phenotype. No pathogenic mutation was found in 100 sporadic cases but a Tyr347Tyr polymorphism was found in two patients. Furthermore, fluorescence in situ hybridization (FISH) analysis was used to map a TIGR-specific yeast artificial chromosome to 1q24.3–q25.2.

Collaboration


Dive into the Christian Y. Mardin's collaboration.

Top Co-Authors

Avatar

Folkert K. Horn

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Robert Laemmer

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Friedrich E. Kruse

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Anselm G. Jünemann

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Ralf P. Tornow

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Arne Viestenz

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Robert Lämmer

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Gottfried O. H. Naumann

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

André Reis

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge