Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Zwieb is active.

Publication


Featured researches published by Christian Zwieb.


Gene | 1989

Bending of DNA by gene-regulatory proteins: construction and use of a DNA bending vector.

Jin Kim; Christian Zwieb; Carl Wu; Sankar Adhya

The binding of a protein to its specific sequence, borne on a DNA fragment, retards the mobility of the fragment in a characteristic way during gel electrophoresis. If the protein induces bending in the DNA, the contortion can also be monitored by gel electrophoresis, because the amount of retardation of the mobility of the DNA-protein complex is dependent upon the position and the degree of the bend induced in the DNA fragment [Wu and Crothers, Nature 308 (1984) 509-513]. We have constructed a plasmid, pBend2, which can generate a large number of DNA fragments of identical length in which the protein-binding nucleotide sequence is located in circular permutations. The vector contains two identical DNA segments containing 17 restriction sites in a direct repeat spanning a central region containing cloning sites. The protein-binding sequence is inserted at one of these cloning sites. To investigate the functional significance of bending, we have compared, using pBend2, the cAMP.cAMP-receptor protein (CPR)-induced bending of CRP-binding sites found in five different genes of Escherichia coli. We have also shown that the bacteriophage lambda 0R1 operator DNA is bent when complexed with the CI or Cro repressor of the phage.


Nucleic Acids Research | 2000

SRPDB (Signal Recognition Particle Database)

Jan Gorodkin; Bjarne Knudsen; Christian Zwieb; Tore Samuelsson

Signal recognition particle (SRP) is a stable cytoplasmic ribonucleoprotein complex that serves to translocate secretory proteins across membranes during translation. The SRP Database (SRPDB) provides compilations of SRP components, ordered alphabetically and phylogenetically. Alignments emphasize phylogenetically-supported base pairs in SRP RNA and conserved residues in the proteins. Data are provided in various formats including a column arrangement for improved access and simplified computational usability. Included are motifs for identification of new sequences, SRP RNA secondary structure diagrams, 3-D models and links to high-resolution structures. This release includes 11 new SRP RNA sequences (total of 129), two protein SRP9 sequences (total of seven), two protein SRP14 sequences (total of 10), two protein SRP19 sequences (total of 16), 10 new SRP54 (ffh) sequences (total of 66), two protein SRP68 sequences (total of seven) and two protein SRP72 sequences (total of nine). Seven sequences of the SRP receptor alpha-subunit and its FtsY homolog (total of 51) are new. Also considered are ss-subunit of SRP receptor, Flhf, Hbsu, CaM kinase II and cpSRP43. Access to SRPDB is at http://psyche.uthct. edu/dbs/SRPDB/SRPDB.html and the European mirror http://www.medkem. gu.se/dbs/SRPDB/SRPDB.html


Nucleic Acids Research | 2000

tmRDB (tmRNA database)

Christian Zwieb; Jacek Wower

The tmRNA database (tmRDB) is maintained at the University of Texas Health Science Center at Tyler, Texas, and is accessible on the WWW at URL http://psyche.uthct.edu/dbs/tmRDB/tmRDB.++ +html. A tmRDB mirror site is located on the campus of Auburn University, Auburn, Alabama, reachable at the URL http://www.ag.auburn.edu/mirror/tmRDB/. Since April 1997, the tmRDB has provided sequences of tmRNA (previously called 10Sa RNA), a molecule present in most bacteria and some organelles. This release adds 17 new sequences for a total of 60 tmRNAs. Sequences and corresponding tmRNA-encoded tag peptides are tabulated in alphabetical and phylo-genetic order. The updated tmRNA alignment improves the secondary structures of known tmRNAs on the level of individual basepairs. tmRDB also provides an introduction to tmRNA function in trans-translation (with links to relevant literature), a limited number of tmRNA secondary structure diagrams, and numerous three-dimensional models generated interactively with the program ERNA-3D.


The EMBO Journal | 2000

Binding and cross‐linking of tmRNA to ribosomal protein S1, on and off the Escherichia coli ribosome

Iwona K. Wower; Christian Zwieb; Sadel A. Guven; Jacek Wower

UV irradiation of an in vitro translation mixture induced cross‐linking of 4‐thioU‐substituted tmRNA to Escherichia coli ribosomes by forming covalent complexes with ribosomal protein S1 and 16S rRNA. In the absence of S1, tmRNA was unable to bind and label ribosomal components. Mobility assays on native gels demonstrated that protein S1 bound to tmRNA with an apparent binding constant of 1 × 108 M−1. A mutant tmRNA, lacking the tag coding region and pseudoknots pk2, pk3 and pk4, did not compete with full‐length tmRNA, indicating that this region is required for S1 binding. This was confirmed by identification of eight cross‐linked nucleotides: U85, located before the resume codon of tmRNA; U105, in the mRNA portion of tmRNA; U172 in pK2; U198, U212, U230 and U240 in pk3; and U246, in the junction between pk3 and pk4. We concluded that ribosomal protein S1, in concert with the previously identified elongation factor EF‐Tu and protein SmpB, plays an important role in tmRNA‐mediated trans‐translation by facilitating the binding of tmRNA to ribosomes and forming complexes with free tmRNA.


Nucleic Acids Research | 2006

The tmRDB and SRPDB resources.

Ebbe Sloth Andersen; Magnus Alm Rosenblad; Niels Larsen; Jesper Cairo Westergaard; Jody M. Burks; Iwona K. Wower; Jacek Wower; Jan Gorodkin; Tore Samuelsson; Christian Zwieb

Maintained at the University of Texas Health Science Center at Tyler, Texas, the tmRNA database (tmRDB) is accessible at the URL with mirror sites located at Auburn University, Auburn, Alabama () and the Royal Veterinary and Agricultural University, Denmark (). The signal recognition particle database (SRPDB) at is mirrored at and the University of Goteborg (). The databases assist in investigations of the tmRNP (a ribonucleoprotein complex which liberates stalled bacterial ribosomes) and the SRP (a particle which recognizes signal sequences and directs secretory proteins to cell membranes). The curated tmRNA and SRP RNA alignments consider base pairs supported by comparative sequence analysis. Also shown are alignments of the tmRNA-associated proteins SmpB, ribosomal protein S1, alanyl-tRNA synthetase and Elongation Factor Tu, as well as the SRP proteins SRP9, SRP14, SRP19, SRP21, SRP54 (Ffh), SRP68, SRP72, cpSRP43, Flhf, SRP receptor (alpha) and SRP receptor (beta). All alignments can be easily examined using a new exploratory browser. The databases provide links to high-resolution structures and serve as depositories for structures obtained by molecular modeling.


Progress in Nucleic Acid Research and Molecular Biology | 1983

The Structure of Ribosomal RNA and Its Organization Relative to Ribosomal Protein

Richard Brimacombe; Peter Maly; Christian Zwieb

Publisher Summary The chapter describes how the sequence information has been used to derive convincing secondary structure models for the RNA from both subunits of the E. coli ribosome, and compares the various models that are proposed. It shows how extrapolation of these data to ribosomal RNA molecules of widely differing size classes leads to the clear conclusion that the secondary structures, as well as significant regions in the primary sequences, have been conserved to a large extent throughout evolution. The chapter deals with the three dimensional organization of the ribosomal RNA and its arrangement with respect to the ribosomal proteins, concentrating once again on the E. coli ribosome. In particular, it includes a review of the application of cross-linking techniques (bath RNA to protein and intra-RNA) to this problem. In general, rather than presenting an exhaustive survey of the literature, the chapter has selected topics or examples to illustrate those problems or points of interest that one considers to be most relevant to the central objective in this field of research— namely, the elucidation of the three-dimensional structure of the ribosomal RNA in situ in the ribosome.


RNA Biology | 2009

Kinship in the SRP RNA family.

Magnus Alm Rosenblad; Niels Larsen; Tore Samuelsson; Christian Zwieb

The signal recognition particle (SRP) is a ribonucleoprotein complex which participates in the targeting of protein to cellular membranes. The RNA component of the SRP has been found in all domains of life, but the size of the molecule and the number of RNA secondary structure elements vary considerably between the different phylogenetic groups. We continued our efforts to identify new SRP RNAs, compare their sequences, discover new secondary structure elements, conserved motifs, and other properties. We found additional proof for the variability in the apical loop of helix 8, and we identified several bacteria which lack all of their SRP components. Based on the distribution of SRP RNA features within the taxonomy, we suggest seven alignment groups: Bacteria with a small (4.5S) SRP RNA, Bacteria with a large (6S) SRP RNA, Archaea, Fungi (Ascomycota), Metazoa group, Protozoa group, and Plants. The proposed divisions improve the prediction of more distantly related SRP RNAs and provide a more inclusive representation of the SRP RNA family. Updates of the Rfam SRP RNA sequence collection are expected to benefit from the suggested groupings.


Nucleic Acids Research | 2014

RNAcentral: an international database of ncRNA sequences

Anton I. Petrov; Simon Kay; Richard Gibson; Eugene Kulesha; Dan Staines; Elspeth A. Bruford; Mathew W. Wright; Sarah W. Burge; Robert D. Finn; Paul J. Kersey; Guy Cochrane; Alex Bateman; Sam Griffiths-Jones; Jennifer Harrow; Patricia P. Chan; Todd M. Lowe; Christian Zwieb; Jacek Wower; Kelly P. Williams; Corey M. Hudson; Robin R. Gutell; Michael B. Clark; Marcel E. Dinger; Xiu Cheng Quek; Janusz M. Bujnicki; Nam-Hai Chua; Jun Liu; Huan Wang; Geir Skogerbø; Yi Zhao

Abstract The field of non-coding RNA biology has been hampered by the lack of availability of a comprehensive, up-to-date collection of accessioned RNA sequences. Here we present the first release of RNAcentral, a database that collates and integrates information from an international consortium of established RNA sequence databases. The initial release contains over 8.1 million sequences, including representatives of all major functional classes. A web portal (http://rnacentral.org) provides free access to data, search functionality, cross-references, source code and an integrated genome browser for selected species.


Journal of Molecular Biology | 1978

Identification of the oligonucleotide and oligopeptide involved in an RNA-protein crosslink induced by ultraviolet irradiation of Escherichia coli 30 S ribosomal subunits

Klaus Möller; Christian Zwieb; Richard Brimacombe

Abstract When 30 S ribosomal subunits are irradiated with ultraviolet light, we have found that an RNA-protein crosslinking reaction occurs whose primary target is protein S7. This paper describes the identification of the oligopeptide and oligonucleotide at the crosslinking point, by direct analysis (a) of the peptide remaining attached to an oligonucleotide (after total digestion of the RNA in the crosslinked complex with ribonucleases A and T1, followed by digestion with trypsin), and (b) of the nucleotides remaining attached to the crosslinked protein (after digestion of the RNA in the complex with ribonuclease T1 alone). The crosslinking site was found to lie within a single short peptide, Ser-Met-Ala-Leu-Arg (positions 113 to 117 in the S7 sequence), with methionine as the probable amino acid concerned. The principal RNA site was found to lie within an oligonucleotide three to six bases long, the underlined portion of the partially ordered sequence C-U-A-C- A-A-U-G.G.C -G in section P of the 16 S RNA. The methodology involved has been designed with a view to being generally applicable in future RNA-protein crosslinking studies, where several proteins are simultaneously attached to the RNA.


Archaea | 2002

Getting on target: the archaeal signal recognition particle.

Christian Zwieb; Jerry Eichler

Protein translocation begins with the efficient targeting of secreted and membrane proteins to complexes embedded within the membrane. In Eukarya and Bacteria, this is achieved through the interaction of the signal recognition particle (SRP) with the nascent polypeptide chain. In Archaea, homologs of eukaryal and bacterial SRP-mediated translocation pathway components have been identified. Biochemical analysis has revealed that although the archaeal system incorporates various facets of the eukaryal and bacterial targeting systems, numerous aspects of the archaeal system are unique to this domain of life. Moreover, it is becoming increasingly clear that elucidation of the archaeal SRP pathway will provide answers to basic questions about protein targeting that cannot be obtained from examination of eukaryal or bacterial models. In this review, recent data regarding the molecular composition, functional behavior and evolutionary significance of the archaeal signal recognition particle pathway are discussed.

Collaboration


Dive into the Christian Zwieb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krishne Gowda

University of Texas Health Science Center at Tyler

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiaming Yin

University of Texas Health Science Center at Tyler

View shared research outputs
Top Co-Authors

Avatar

Elena Iakhiaeva

University of Texas Health Science Center at Tyler

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaun D. Black

University of Texas Health Science Center at Tyler

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge