Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christiane Neuhoff is active.

Publication


Featured researches published by Christiane Neuhoff.


PLOS ONE | 2014

The Expression Pattern of microRNAs in Granulosa Cells of Subordinate and Dominant Follicles during the Early Luteal Phase of the Bovine Estrous Cycle

D. Salilew-Wondim; Ijaz Ahmad; Samuel Gebremedhn; Sudeep Sahadevan; Mm Hossain; Franca Rings; M. Hoelker; Ernst Tholen; Christiane Neuhoff; Christian Looft; Karl Schellander; Dawit Tesfaye

This study aimed to investigate the miRNA expression patterns in granulosa cells of subordinate (SF) and dominant follicle (DF) during the early luteal phase of the bovine estrous cycle. For this, miRNA enriched total RNA isolated from granulosa cells of SF and DF obtained from heifers slaughtered at day 3 and day 7 of the estrous cycle was used for miRNAs deep sequencing. The results revealed that including 17 candidate novel miRNAs, several known miRNAs (n = 291–318) were detected in SF and DF at days 3 and 7 of the estrous cycle of which 244 miRNAs were common to all follicle groups. The let-7 families, bta-miR-10b, bta-miR-26a, bta-miR-99b and bta-miR-27b were among abundantly expressed miRNAs in both SF and DF at both days of the estrous cycle. Further analysis revealed that the expression patterns of 16 miRNAs including bta-miR-449a, bta-miR-449c and bta-miR-222 were differentially expressed between the granulosa cells of SF and DF at day 3 of the estrous cycle. However, at day 7 of the estrous cycle, 108 miRNAs including bta-miR-409a, bta-miR-383 and bta-miR-184 were differentially expressed between the two groups of granulosa cell revealing the presence of distinct miRNA expression profile changes between the two follicular stages at day 7 than day 3 of the estrous cycle. In addition, unlike the SF, marked temporal miRNA expression dynamics was observed in DF groups between day 3 and 7 of the estrous cycle. Target gene prediction and pathway analysis revealed that major signaling associated with follicular development including Wnt signaling, TGF-beta signaling, oocyte meiosis and GnRH signaling were affected by differentially expressed miRNAs. Thus, this study highlights the miRNA expression patterns of granulosa cells in subordinate and dominant follicles that could be associated with follicular recruitment, selection and dominance during the early luteal phase of the bovine estrous cycle.


PLOS ONE | 2015

MicroRNA Expression Profile in Bovine Granulosa Cells of Preovulatory Dominant and Subordinate Follicles during the Late Follicular Phase of the Estrous Cycle

Samuel Gebremedhn; D. Salilew-Wondim; Ijaz Ahmad; Sudeep Sahadevan; Mm Hossain; M. Hoelker; Franca Rings; Christiane Neuhoff; Ernst Tholen; Christian Looft; Karl Schellander; Dawit Tesfaye

In bovine, ovarian follicles grow in a wave-like fashion with commonly 2 or 3 follicular waves emerging per estrous cycle. The dominant follicle of the follicular wave which coincides with the LH-surge becomes ovulatory, leaving the subordinate follicles to undergo atresia. These physiological processes are controlled by timely and spatially expressed genes and gene products, which in turn are regulated by post-transcriptional regulators. MicroRNAs, a class of short non-coding RNA molecules, are one of the important posttranscriptional regulators of genes associated with various cellular processes. Here we investigated the expression pattern of miRNAs in granulosa cells of bovine preovulatory dominant and subordinate follicles during the late follicular phase of bovine estrous cycle using Illumina miRNA deep sequencing. In addition to 11 putative novel miRNAs, a total of 315 and 323 known miRNAs were detected in preovulatory dominant and subordinate follicles, respectively. Moreover, in comparison with the subordinate follicles, a total of 64 miRNAs were found to be differentially expressed in preovulatory dominant follicles, of which 34 miRNAs including the miR-132 and miR-183 clusters were significantly enriched, and 30 miRNAs including the miR-17-92 cluster, bta-miR-409a and bta-miR-378 were significantly down regulated in preovulatory dominant follicles. In-silico pathway analysis revealed that canonical pathways related to oncogenesis, cell adhesion, cell proliferation, apoptosis and metabolism were significantly enriched by the predicted target genes of differentially expressed miRNAs. Furthermore, Luciferase reporter assay analysis showed that one of the differentially regulated miRNAs, the miR-183 cluster miRNAs, were validated to target the 3´-UTR of FOXO1 gene. Moreover FOXO1 was highly enriched in granulosa cells of subordinate follicles in comparison with the preovulatory dominant follicles demonstrating reciprocal expression pattern with miR-183 cluster miRNAs. In conclusion, the presence of distinct sets of miRNAs in granulosa cells of preovulatory dominant and subordinate follicles supports the potential role of miRNAs in post-transcriptional regulation of genes involved in bovine follicular development during the late follicular phase of the estrous cycle.


PLOS ONE | 2015

Genome-Wide DNA Methylation Patterns of Bovine Blastocysts Developed In Vivo from Embryos Completed Different Stages of Development In Vitro

D. Salilew-Wondim; Eric Fournier; M. Hoelker; Mohammed Saeed-Zidane; Ernst Tholen; Christian Looft; Christiane Neuhoff; U. Besenfelder; Vita Havlicek; Franca Rings; Dominic Gagné; Marc-André Sirard; Claude Robert; Habib A. Shojaei Saadi; A. Gad; Karl Schellander; Dawit Tesfaye

Early embryonic loss and altered gene expression in in vitro produced blastocysts are believed to be partly caused by aberrant DNA methylation. However, specific embryonic stage which is sensitive to in vitro culture conditions to alter the DNA methylation profile of the resulting blastocysts remained unclear. Therefore, the aim of this study was to investigate the stage specific effect of in vitro culture environment on the DNA methylation response of the resulting blastocysts. For this, embryos cultured in vitro until zygote (ZY), 4-cell (4C) or 16-cell (16C) were transferred to recipients and the blastocysts were recovery at day 7 of the estrous cycle. Another embryo group was cultured in vitro until blastocyst stage (IVP). Genome-wide DNA methylation profiles of ZY, 4C, 16C and IVP blastocyst groups were then determined with reference to blastocysts developed completely under in vivo condition (VO) using EmbryoGENE DNA Methylation Array. To assess the contribution of methylation changes on gene expression patterns, the DNA methylation data was superimposed to the transcriptome profile data. The degree of DNA methylation dysregulation in the promoter and/or gene body regions of the resulting blastocysts was correlated with successive stages of development the embryos advanced under in vitro culture before transfer to the in vivo condition. Genomic enrichment analysis revealed that in 4C and 16C blastocyst groups, hypermethylated loci were outpacing the hypomethylated ones in intronic, exonic, promoter and proximal promoter regions, whereas the reverse was observed in ZY blastocyst group. However, in the IVP group, as much hypermethylated as hypomethylated probes were detected in gene body and promoter regions. In addition, gene ontology analysis indicated that differentially methylated regions were found to affected several biological functions including ATP binding in the ZY group, programmed cell death in the 4C, glycolysis in 16C and genetic imprinting and chromosome segregation in IVP blastocyst groups. Furthermore, 1.6, 3.4, 3.9 and 9.4% of the differentially methylated regions that were overlapped to the transcriptome profile data were negatively correlated with the gene expression patterns in ZY, 4C, 16C and IVP blastocyst groups, respectively. Therefore, this finding indicated that suboptimal culture condition during preimplantation embryo development induced changes in the DNA methylation landscape of the resulting blastocysts in a stage dependent manner and the altered DNA methylation pattern was only partly explained the observed aberrant gene expression patterns of the blastocysts.


Molecular Reproduction and Development | 2014

Bovine embryo survival under oxidative‐stress conditions is associated with activity of the NRF2‐mediated oxidative‐stress‐response pathway

Ahmed Amin; A. Gad; D. Salilew-Wondim; Sigit Prastowo; M. Hoelker; Franca Rings; Ernst Tholen; Christiane Neuhoff; Christian Looft; Karl Schellander; Dawit Tesfaye

In present study, we sought to examine the ability of preimplantation bovine embryos to activate the NF‐E2‐related factor 2 (NRF2)‐mediated oxidative‐stress response under an oxidative stress environment. In vitro 2‐, 4‐, 8‐, 16‐cell‐, and blastocyst‐stage embryos were cultured under low (5%) or high (20%) oxygen levels. The expression of NRF2, KEAP1 (NRF2 inhibitor), antioxidants downstream of NRF2, and genes associated with embryo metabolism were analyzed between the embryo groups using real‐time quantitative PCR. NRF2 and KEAP1 protein abundance, mitochondrial activity, and accumulation of reactive oxygen species (ROS) were also investigated in blastocysts of varying competence that were derived from high‐ or low‐oxygen levels. The expression levels of NRF2 and its downstream antioxidant genes were higher in 8‐cell, 16‐cell, and blastocyst stages under high oxygen tension, whereas KEAP1 expression was down‐regulated under the same conditions. Higher expression of NRF2 and lower ROS levels were detected in early (competent) blastocysts compared to their late (noncompetent) counterparts in both oxygen‐tension groups. Similarly, higher levels of active nuclear NRF2 protein were detected in competent blastocysts compared to their noncompetent counterparts. Thus, the survival and developmental competence of embryos cultured under oxidative stress are associated with activity of the NRF2‐mediated oxidative stress response pathway during bovine pre‐implantation embryo development. Mol. Reprod. Dev. 81: 497–513, 2014.


PLOS ONE | 2013

RNA Deep Sequencing Reveals Novel Candidate Genes and Polymorphisms in Boar Testis and Liver Tissues with Divergent Androstenone Levels

Asep Gunawan; Sudeep Sahadevan; Christiane Neuhoff; Christine Große-Brinkhaus; A. Gad; Luc Frieden; Dawit Tesfaye; Ernst Tholen; Christian Looft; Muhammad Jasim Uddin; Karl Schellander; Mehmet Ulas Cinar

Boar taint is an unpleasant smell and taste of pork meat derived from some entire male pigs. The main causes of boar taint are the two compounds androstenone (5α-androst-16-en-3-one) and skatole (3-methylindole). It is crucial to understand the genetic mechanism of boar taint to select pigs for lower androstenone levels and thus reduce boar taint. The aim of the present study was to investigate transcriptome differences in boar testis and liver tissues with divergent androstenone levels using RNA deep sequencing (RNA-Seq). The total number of reads produced for each testis and liver sample ranged from 13,221,550 to 33,206,723 and 12,755,487 to 46,050,468, respectively. In testis samples 46 genes were differentially regulated whereas 25 genes showed differential expression in the liver. The fold change values ranged from −4.68 to 2.90 in testis samples and −2.86 to 3.89 in liver samples. Differentially regulated genes in high androstenone testis and liver samples were enriched in metabolic processes such as lipid metabolism, small molecule biochemistry and molecular transport. This study provides evidence for transcriptome profile and gene polymorphisms of boars with divergent androstenone level using RNA-Seq technology. Digital gene expression analysis identified candidate genes in flavin monooxygenease family, cytochrome P450 family and hydroxysteroid dehydrogenase family. Moreover, polymorphism and association analysis revealed mutation in IRG6, MX1, IFIT2, CYP7A1, FMO5 and KRT18 genes could be potential candidate markers for androstenone levels in boars. Further studies are required for proving the role of candidate genes to be used in genomic selection against boar taint in pig breeding programs.


Biology of Reproduction | 2016

MicroRNA-183-96-182 Cluster Regulates Bovine Granulosa Cell Proliferation and Cell Cycle Transition by Coordinately Targeting FOXO1

Samuel Gebremedhn; D. Salilew-Wondim; M. Hoelker; Franca Rings; Christiane Neuhoff; Ernst Tholen; Karl Schellander; Dawit Tesfaye

ABSTRACT Large-scale expression profiling of micro-RNAs (miRNAs) in bovine granulosa cells from dominant and subordinate follicles on Day 19 of the estrous cycle revealed enriched micro-RNA-183-96-182 cluster miRNAs in preovulatory dominant follicles that coordinately regulate the forkhead box protein O1 (FOXO1) gene. However, little is known about the role of this cluster in bovine granulosa cell function. We used an in vitro granulosa cell culture model to investigate this role. Granulosa cells aspirated from small growing follicles (3–5 mm in diameter) were cultured in Dulbecco modified Eagle medium/F-12 medium supplemented with fetal bovine serum and transfected with locked nucleic acid-based miRNA mimics, inhibitors, and corresponding negative controls. Overexpression of the miRNA cluster resulted in suppression of FOXO1 mRNA and protein, whereas inhibition of the cluster increased expression of FOXO1 mRNA. Overexpression also increased the relative rate of cell proliferation, whereas inhibition slowed it down. Similarly, the proportion of cells under G0/G1 arrest declined, whereas the ratio of cells in S phase increased in response to miR-183-96-182 overexpression. Selective knockdown of FOXO1 mRNA using anti-FOXO1 small interfering RNA increased the rate of granulosa cell proliferation, decreased the proportion of cells under G0/G1 arrest, and increased the proportion of cells in the S phase of cell cycle. Our data suggest that miR-183-96-182 cluster miRNAs promote proliferation and G1/S transition of bovine granulosa cells by coordinately targeting FOXO1, suggesting a critical role in granulosa cell function. MicroRNA-183-96-182 cluster regulates bovine granulosa cell function by targeting FOXO1 gene.


PLOS ONE | 2015

Sulforaphane Epigenetically Regulates Innate Immune Responses of Porcine Monocyte-Derived Dendritic Cells Induced with Lipopolysaccharide

Xueqi Qu; Maren Julia Pröll; Christiane Neuhoff; Rui Zhang; Mehmet Ulas Cinar; Md. Munir Hossain; Dawit Tesfaye; Christine Große-Brinkhaus; D. Salilew-Wondim; Ernst Tholen; Christian Looft; Michael Hölker; Karl Schellander; Muhammad Jasim Uddin

Histone acetylation, regulated by histone deacetylases (HDACs) is a key epigenetic mechanism controlling gene expressions. Although dendritic cells (DCs) are playing pivotal roles in host immune responses, the effect of epigenetic modulation of DCs immune responses remains unknown. Sulforaphane (SFN) as a HDAC inhibitor has anti-inflammatory properties, which is used to investigate the epigenetic regulation of LPS-induced immune gene and HDAC family gene expressions in porcine monocyte-derived dendritic cells (moDCs). SFN was found to inhibit the lipopolysaccharide LPS induced HDAC6, HDAC10 and DNA methyltransferase (DNMT3a) gene expression, whereas up-regulated the expression of DNMT1 gene. Additionally, SFN was observed to inhibit the global HDAC activity, and suppressed moDCs differentiation from immature to mature DCs through down-regulating the CD40, CD80 and CD86 expression and led further to enhanced phagocytosis of moDCs. The SFN pre-treated of moDCs directly altered the LPS-induced TLR4 and MD2 gene expression and dynamically regulated the TLR4-induced activity of transcription factor NF-κB and TBP. SFN showed a protective role in LPS induced cell apoptosis through suppressing the IRF6 and TGF-ß1 production. SFN impaired the pro-inflammatory cytokine TNF-α and IL-1ß secretion into the cell culture supernatants that were induced in moDCs by LPS stimulation, whereas SFN increased the cellular-resident TNF-α accumulation. This study demonstrates that through the epigenetic mechanism the HDAC inhibitor SFN could modulate the LPS induced innate immune responses of porcine moDCs.


PLOS ONE | 2013

Identification of the Novel Candidate Genes and Variants in Boar Liver Tissues with Divergent Skatole Levels Using RNA Deep Sequencing

Asep Gunawan; Sudeep Sahadevan; Mehmet Ulas Cinar; Christiane Neuhoff; Christine Große-Brinkhaus; Luc Frieden; Dawit Tesfaye; Ernst Tholen; Christian Looft; Dessie Salilew Wondim; Michael Hölker; Karl Schellander; Muhammad Jasim Uddin

Boar taint is the unpleasant odour of meat derived from non-castrated male pigs, caused by the accumulation of androstenone and skatole in fat. Skatole is a tryptophan metabolite produced by intestinal bacteria in gut and catabolised in liver. Since boar taint affects consumer’s preference, the aim of this study was to perform transcriptome profiling in liver of boars with divergent skatole levels in backfat by using RNA-Seq. The total number of reads produced for each liver sample ranged from 11.8 to 39.0 million. Approximately 448 genes were differentially regulated (p-adjusted <0.05). Among them, 383 genes were up-regulated in higher skatole group and 65 were down-regulated (p<0.01, FC>1.5). Differentially regulated genes in the high skatole liver samples were enriched in metabolic processes such as small molecule biochemistry, protein synthesis, lipid and amino acid metabolism. Pathway analysis identified the remodeling of epithelial adherens junction and TCA cycle as the most dominant pathways which may play important roles in skatole metabolism. Differential gene expression analysis identified candidate genes in ATP synthesis, cytochrome P450, keratin, phosphoglucomutase, isocitrate dehydrogenase and solute carrier family. Additionally, polymorphism and association analysis revealed that mutations in ATP5B, KRT8, PGM1, SLC22A7 and IDH1 genes could be potential markers for skatole levels in boars. Furthermore, expression analysis of exon usage of three genes (ATP5B, KRT8 and PGM1) revealed significant differential expression of exons of these genes in different skatole levels. These polymorphisms and exon expression differences may have impacts on the gene activity ultimately leading to skatole variation and could be used as genetic marker for boar taint related traits. However, further validation is required to confirm the effect of these genetic markers in other pig populations in order to be used in genomic selection against boar taint in pig breeding programs.


BMC Genomics | 2016

Clinical and subclinical endometritis induced alterations in bovine endometrial transcriptome and miRNome profile

D. Salilew-Wondim; Sally Ibrahim; Samuel Gebremedhn; Dawit Tesfaye; M. Heppelmann; Heinrich Bollwein; Christiane Pfarrer; Ernst Tholen; Christiane Neuhoff; Karl Schellander; M. Hoelker

BackgroundClinical and subclinical endometritis are known to affect the fertility of dairy cows by inducing uterine inflammation. We hypothesized that clinical or subclinical endometritis could affect the fertility of cows by disturbing the molecular milieu of the uterine environment. Here we aimed to investigate the endometrial molecular signatures and pathways affected by clinical and subclinical endometritis. For this, Holstein Frisian cows at 42–60 days postpartum were classified as healthy (HE), subclinical endometritis (SE) or clinical endometritis (CE) based on veterinary clinical examination of the animals and histological evaluation the corresponding endometrial biopsies. Endometrial transcriptome and miRNome profile changes and associated molecular pathways induced by subclinical or clinical endometritis were then investigated using GeneChip® Bovine Genome Array and Exiqon microRNA PCR Human Panel arrays, respectively. The results were further validated in vitro using endometrial stromal and epithelial cells challenged with subclinical and clinical doses of lipopolysaccharide (LPS).ResultTranscriptome profile analysis revealed altered expression level of 203 genes in CE compared to HE animals. Of these, 92 genes including PTHLH, INHBA, DAPL1 and SERPINA1 were significantly upregulated, whereas the expression level of 111 genes including MAOB, CXCR4, HSD11B and, BOLA, were significantly downregulated in CE compared to the HE animal group. However, in SE group, the expression patterns of only 28 genes were found to be significantly altered, of which 26 genes including PTHLH, INHBA, DAPL1, MAOB, CXCR4 and TGIF1 were common to the CE group. Gene annotation analysis indicated the immune system processes; G-protein coupled receptor signaling pathway and chemotaxis to be among the affected functions in endometritis animal groups. In addition, miRNA expression analysis indicated the dysregulation of 35 miRNAs including miR-608, miR-526b* and miR-1265 in CE animals and 102 miRNAs including let-7 family (let-7a, let-7c, let-7d, let-7d*, let-7e, let-7f, let-7i) in SE animals. Interestingly, 14 miRNAs including let-7e, miR-92b, miR-337-3p, let-7f and miR-145 were affected in both SE and CE animal groups. Further in vitro analysis of selected differentially expressed genes and miRNAs in endometrial stroma and epithelial cells challenged with SE and CE doses of LPS showed similar results to that of the array data generated using samples collected from SE and CE animals.ConclusionThe results of this study unraveled endometrial transcriptome and miRNome profile alterations in cows affected by subclinical or clinical endometritis which may have a significant effect on the uterine homeostasis and uterine receptivity.


Journal of Ovarian Research | 2015

Controlled ovarian hyperstimulation induced changes in the expression of circulatory miRNA in bovine follicular fluid and blood plasma

Sina Seifi Noferesti; Md. Mahmodul Hasan Sohel; M. Hoelker; D. Salilew-Wondim; Ernst Tholen; Christian Looft; Franca Rings; Christiane Neuhoff; Karl Schellander; Dawit Tesfaye

BackgroundDespite its role in increasing the number of offspring during the lifetime of an individual animal, controlled ovarian hyperstimulation (COH) may have detrimental effects on oocyte development, embryo quality and endometrial receptivity. Circulating miRNAs in bio-fluids have been shown to be associated with various pathological conditions including cancers. Here we aimed to investigate the effect of COH on the level of extracellular miRNAs in bovine follicular fluid and blood plasma and elucidate their mode of circulation and potential molecular mechanisms to be affected in the reproductive tract.MethodTwelve simmental heifers were estrous synchronized and six of them were hyperstimulated using FSH. Follicular fluid samples from experimental animals were collected using ovum pick up technique at day 0 of the estrous cycle and blood samples were collected at day 0, 3 and 7 of post ovulation. The expression profile of circulatory miRNAs in follicular fluid and blood plasma were performed using the human miRCURY LNA™ Universal RT miRNA PCR array system. A comparative threshold cycle method was used to determine the relative abundance of the miRNAs.ResultsA total of 504 and 402 miRNAs were detected in both bovine follicular fluid and blood plasma, respectively. Of these 57 and 21 miRNAs were found to be differentially expressed in follicular fluid and blood plasma, respectively derived from hyperstimulated versus unstimulated heifers. Bioinformatics analysis of those circulating miRNAs indicated that their potential target genes are involved in several pathways including TGF-beta signaling pathway, MAPK signaling pathway, pathways in cancer and Oocyte meiosis.Moreover, detail analysis of the mode of circulation of some candidates showed that most of the miRNA were found to be detected in both exosomal and Ago2 protein complex fraction of both follicular fluid and blood plasma.ConclusionOur data provide the consequence of hyperstimulation induced changes of extracellular miRNAs in bovine follicular fluid and blood plasma, which may have a potential role in regulating genes associated not only with bovine ovarian function but also involved in altering various physiological in bovine oocytes, embryos and modulating reproductive tract environment.

Collaboration


Dive into the Christiane Neuhoff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge