Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christiane Quiniou is active.

Publication


Featured researches published by Christiane Quiniou.


Journal of Biological Chemistry | 2003

Modulation of Pro-inflammatory Gene Expression by Nuclear Lysophosphatidic Acid Receptor Type-1

Sylvie G. Bernier; Alejandro Vazquez-Tello; Sonia Brault; Martin Beauchamp; Christiane Quiniou; Anne Marilise Marrache; Daniella Checchin; Florian Sennlaub; Xin Hou; Mony Nader; Ghassan Bkaily; Alfredo Ribeiro-da-Silva; Edward J. Goetzl; Sylvain Chemtob

Lysophosphatidic acid (LPA) is a bioactive molecule involved in inflammation, immunity, wound healing, and neoplasia. Its pleiotropic actions arise presumably by interaction with their cell surface G protein-coupled receptors. Herein, the presence of the specific nuclear lysophosphatidic acid receptor-1 (LPA1R) was revealed in unstimulated porcine cerebral microvascular endothelial cells (pCMVECs), LPA1R stably transfected HTC4 rat hepatoma cells, and rat liver tissue using complementary approaches, including radioligand binding experiments, electron- and cryomicroscopy, cell fractionation, and immunoblotting with three distinct antibodies. Coimmunoprecipitation studies in enriched plasmalemmal fractions of unstimulated pCMVEC showed that LPA1Rs are dually sequestrated in caveolin-1 and clathrin subcompartments, whereas in nuclear fractions LPA1R appeared primarily in caveolae. Immunofluorescent assays using a cell-free isolated nuclear system confirmed LPA1R and caveolin-1 co-localization. In pCMVEC, LPA-stimulated increases in cyclooxygenase-2 and inducible nitric-oxide synthase RNA and protein expression were insensitive to caveolea-disrupting agents but sensitive to LPA-generating phospholipase A2 enzyme and tyrosine kinase inhibitors. Moreover, LPA-induced increases in Ca2+ transients and/or iNOS expression in highly purified rat liver nuclei were prevented by pertussis toxin, phosphoinositide 3-kinase/Akt inhibitor wortmannin and Ca2+ chelator and channel blockers EGTA and SK&F96365, respectively. This study describes for the first time the nucleus as a potential organelle for LPA intracrine signaling in the regulation of pro-inflammatory gene expression.


Circulation Research | 2002

Regulation of eNOS Expression in Brain Endothelial Cells by Perinuclear EP3 Receptors

Isabelle Dumont; Anne Marilise Marrache; Alejandro Vazquez-Tello; Sylvie G. Bernier; Daniel Abran; Xin Hou; Martin Beauchamp; Christiane Quiniou; Asmàa Bouayad; Sanaa Choufani; Mousumi Bhattacharya; Alfredo Ribeiro-da-Silva; Daya R. Varma; Ghassan Bkaily; Sylvain Chemtob

We reported upregulation of endothelial nitric oxide synthase (eNOS) by PGE2 in tissues and presence of perinuclear PGE2 receptors (EP). We presently studied mechanisms by which PGE2 induces eNOS expression in cerebral microvessel endothelial cells (ECs). 16,16-Dimethyl PGE2 and selective EP3 receptor agonist M&B28767 increased eNOS expression in ECs and the NO-dependent vasorelaxant responses induced by substance P on cerebral microvessels. These effects could be prevented by prostaglandin transporter blocker bromcresol green and actinomycin D. EP3 immunoreactivity was confirmed on plasma and perinuclear membrane of ECs. M&B28767 increased eNOS RNA expression in EC nuclei, and this effect was augmented by overexpression of EP3 receptors. M&B28767 also induced increased phosphorylation of Erk-1/2 and Akt, as well as changes in membrane potential revealed by the potentiometric fluorescent dye RH421, which were prevented by iberiotoxin; perinuclear KCa channels were detected, and their functionality corroborated by NS1619-induced Ca2+ signals and nuclear membrane potential changes. Moreover, pertussis toxin, Ca2+ chelator, and channel blockers EGTA, BAPTA, and SK&F96365, as well as KCa channel blocker iberiotoxin, protein-kinase inhibitors wortmannin and PD 98059, and NF-&kgr;B inhibitor pyrrolidine dithiocarbamate prevented M&B28767-induced increase in Ca2+ transients and/or eNOS expression in EC nuclei. We describe for the first time that PGE2 through its access into cell by prostaglandin transporters induces eNOS expression by activating perinuclear EP3 receptors coupled to pertussis toxin-sensitive G proteins, a process that depends on nuclear envelope KCa channels, protein kinases, and NF-&kgr;B; the roles for nuclear EP3 receptors seem different from those on plasma membrane.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Microglia and Interleukin-1β in Ischemic Retinopathy Elicit Microvascular Degeneration Through Neuronal Semaphorin-3A

José Carlos Rivera; Nicholas Sitaras; Baraa Noueihed; David Hamel; Ankush Madaan; Tianwei (Ellen) Zhou; Jean-Claude Honoré; Christiane Quiniou; Jean-Sebastien Joyal; Pierre Hardy; Florian Sennlaub; William D. Lubell; Sylvain Chemtob

Objective—Proinflammatory cytokines contribute to the development of retinal vasculopathies. However, the role of these factors and the mechanisms by which they elicit their effects in retina are not known. We investigated whether activated microglia during early stages of ischemic retinopathy produces excessive interleukin-1&bgr; (IL-1&bgr;), which elicits retinal microvascular degeneration not directly but rather by triggering the release of the proapoptotic/repulsive factor semaphorin-3A (Sema3A) from neurons. Approach and Results—Sprague Dawley rats subjected to retinopathy induced by hyperoxia (80% O2; O2-induced retinopathy) exhibited retinal vaso-obliteration associated with microglial activation, NLRP3 upregulation, and IL-1&bgr; and Sema3A release; IL-1&bgr; was mostly generated by microglia. Intraperitoneal administration of IL-1 receptor antagonists (Kineret, or rytvela [101.10]) decreased these effects and enhanced retinal revascularization; knockdown of Sema3A resulted in microvessel preservation and, conversely, administration of IL-1&bgr; caused vaso-obliteration. In vitro, IL-1&bgr; derived from activated primary microglial cells, cultured under hyperoxia, stimulated the release of Sema3A in retinal ganglion cells-5, which in turn induced apoptosis of microvascular endothelium; antagonism of IL-1 receptor decreased microglial activation and on retinal ganglion cells-5 abolished the release of Sema3A inhibiting ensuing endothelial cell apoptosis. IL-1&bgr; was not directly cytotoxic to endothelial cells. Conclusions—Our findings suggest that in the early stages of O2-induced retinopathy, retinal microglia are activated to produce IL-1&bgr;, which sustains the activation of microglia and induces microvascular injury through the release of Sema3A from adjacent neurons. Interference with IL-1 receptor or Sema3A actions preserves the microvascular bed in ischemic retinopathies and, consequently, decreases ensued pathological preretinal neovascularization.


Journal of Biological Chemistry | 2010

A Novel Biased Allosteric Compound Inhibitor of Parturition Selectively Impedes the Prostaglandin F2α-mediated Rho/ROCK Signaling Pathway

Eugénie Goupil; Danaë Tassy; Carine B. Bourguet; Christiane Quiniou; Veronica Wisehart; Darlaine Pétrin; Christian Le Gouill; Dominic Devost; Hans H. Zingg; Michel Bouvier; Horacio Uri Saragovi; Sylvain Chemtob; William D. Lubell; Audrey Claing; Terence E. Hébert; Stéphane A. Laporte

The prostaglandin F2α (PGF2α) receptor (FP) is a key regulator of parturition and a target for pharmacological management of preterm labor. However, an incomplete understanding of signaling pathways regulating myometrial contraction hinders the development of improved therapeutics. Here we used a peptidomimetic inhibitor of parturition in mice, PDC113.824, whose structure was based on the NH2-terminal region of the second extracellular loop of FP receptor, to gain mechanistic insight underlying FP receptor-mediated cell responses in the context of parturition. We show that PDC113.824 not only delayed normal parturition in mice but also that it inhibited both PGF2α- and lipopolysaccharide-induced preterm labor. PDC113.824 inhibited PGF2α-mediated, Gα12-dependent activation of the Rho/ROCK signaling pathways, actin remodeling, and contraction of human myometrial cells likely by acting as a non-competitive, allosteric modulator of PGF2α binding. In contrast to its negative allosteric modulating effects on Rho/ROCK signaling, PDC113.824 acted as a positive allosteric modulator on PGF2α-mediated protein kinase C and ERK1/2 signaling. This bias in receptor-dependent signaling was explained by an increase in FP receptor coupling to Gαq, at the expense of coupling to Gα12. Our findings regarding the allosteric and biased nature of PDC113.824 offer new mechanistic insights into FP receptor signaling relevant to parturition and suggest novel therapeutic opportunities for the development of new tocolytic drugs.


Stroke | 2003

Selective Neuromicrovascular Endothelial Cell Death by 8-Iso-Prostaglandin F2α Possible Role in Ischemic Brain Injury

Sonia Brault; Ana Katherine Martinez-Bermudez; Anne Marilise Marrache; Xin Hou; Martin Beauchamp; Christiane Quiniou; Guillermina Almazan; Christian Lachance; Jackson Roberts; Daya R. Varma; Sylvain Chemtob

Background and Purpose— Free radical-induced peroxidation is an important factor in the genesis of hypoxic-ischemic encephalopathy, including that of the preterm infant. Isoprostanes are major peroxidation products. Since microvascular dysfunction seems to contribute to ischemic encephalopathies, we studied the cytotoxicity of 8-iso-prostaglandin F2&agr; (PGF2&agr;) on cerebral microvascular cells. Methods— Microvascular endothelial, astroglial, and smooth muscle cells from newborn brain were cultured. The cytotoxicity of 8-iso-PGF2&agr; on these cells was determined by MTT assays and lactate dehydrogenase (LDH) release, propidium iodide incorporation, and DNA fragmentation (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling [TUNEL]). In addition, effects of intraventricular injections of 8-iso-PGF2&agr; and possible involvement of thromboxane in 8-iso-PGF2&agr;-induced cytotoxicity were determined. Results— 8-Iso-PGF2&agr; induced time- and concentration-dependent endothelial cell death (EC50=0.1 nmol/L) but exerted little effect on smooth muscle and astroglial cells; endothelial cell death seemed mostly of oncotic nature (propidium iodide incorporation and LDH release). Cell death was associated with increased endothelial thromboxane A2 (TXA2) formation and was prevented by TXA2 synthase inhibitors (CGS12970 and U63557A); TXA2 mimetics U46619 and I-BOP also caused endothelial cell death. Intraventricular injection of 8-iso-PGF2&agr; induced periventricular damage, which was attenuated by CGS12970 pretreatment. Conclusions— These data disclose a novel action of 8-iso-PGF2&agr; involving TXA2 in oxidant stress-induced cerebral microvascular injury and brain damage.


Journal of the American Chemical Society | 2009

Positional Scanning for Peptide Secondary Structure by Systematic Solid-Phase Synthesis of Amino Lactam Peptides

Andrew G. Jamieson; Nicolas Boutard; Kim Beauregard; Mandar S. Bodas; Huy Ong; Christiane Quiniou; Sylvain Chemtob; William D. Lubell

Incorporation of amino lactams into biologically active peptides has been commonly used to restrict conformational mobility, enhance selectivity, and increase potency. A solid-phase method using a Fmoc-protection strategy has been developed for the systematic synthesis of peptides containing configurationally defined alpha- and beta-amino gamma-lactams. N-Alkylation of N-silyl peptides with five- and six-member cyclic sulfamidates 9 and 8 minimized bis-alkylation and provided N-alkyl peptides, which underwent lactam annulation under microwave heating. Employing this solid-phase protocol on the growth hormone secretagogue GHRP-6, as well as on the allosteric modulator of the IL-1 receptor 101.10, has furnished 16 lactam derivatives and validated the effectiveness of this approach on peptides bearing aliphatic, aromatic, branched, charged, and heteroatomic side chains. The binding affinity IC(50) values of the GHRP-6 lactam analogues on both the GHS-R1a and CD36 receptors are reported as well as inhibition of thymocyte proliferation measurements for the 101.10 lactam analogues. In these cases, lactam analogues were prepared exhibiting similar or improved properties compared with the parent peptide. Considering the potential for amino lactams to induce peptide turn conformations, the effective method described herein for their supported construction on growing peptides, and for the systematical amino lactam scan of peptides, has proven useful for the rapid identification of the secondary structure necessary for peptide biological activity.


Journal of Immunology | 2008

Development of a Novel Noncompetitive Antagonist of IL-1 Receptor

Christiane Quiniou; Przemyslaw Sapieha; Isabelle Lahaie; Xin Hou; Sonia Brault; Martin Beauchamp; Martin Leduc; Lenka Rihakova; Jean-Sebastien Joyal; Sylvain Nadeau; Nikolaus Heveker; William D. Lubell; Florian Sennlaub; Greg Miller; Alexey V. Pshezhetsky; Sylvain Chemtob

IL-1 is a major proinflammatory cytokine which interacts with the IL-1 receptor I (IL-1RI) complex, composed of IL-1RI and IL-1R accessory protein subunits. Currently available strategies to counter pathological IL-1 signaling rely on a recombinant IL-1 receptor antagonist, which directly competes with IL-1 for its binding site. Presently, there are no small antagonists of the IL-1RI complex. Given this void, we derived 15 peptides from loops of IL-1R accessory protein, which are putative interactive sites with the IL-1RI subunit. In this study, we substantiate the merits of one of these peptides, rytvela (we termed “101.10”), as an inhibitor of IL-1R and describe its properties consistent with those of an allosteric negative modulator. 101.10 (IC50 ≈ 1 nM) blocked human thymocyte proliferation in vitro, and demonstrated robust in vivo effects in models of hyperthermia and inflammatory bowel disease as well as topically in contact dermatitis, superior to corticosteroids and IL-1ra; 101.10 did not bind to IL-1RI deficient cells and was ineffective in vivo in IL-1RI knockout mice. Importantly, characterization of 101.10, revealed noncompetitive antagonist actions and functional selectivity by blocking certain IL-1R pathways while not affecting others. Findings describe the discovery of a potent and specific small (peptide) antagonist of IL-1RI, with properties in line with an allosteric negative modulator.


Journal of Immunology | 2015

Novel Noncompetitive IL-1 Receptor-Biased Ligand Prevents Infection- and Inflammation-Induced Preterm Birth.

Mathieu Nadeau-Vallée; Christiane Quiniou; Julia Palacios; Xin Hou; Atefeh Erfani; Ankush Madaan; Melanie Sanchez; Kelycia Leimert; Amarilys Boudreault; François Duhamel; José Carlos Rivera; Tang Zhu; Baraa Noueihed; Sarah A. Robertson; Xin Ni; David M. Olson; William D. Lubell; Sylvie Girard; Sylvain Chemtob

Preterm birth (PTB) is firmly linked to inflammation regardless of the presence of infection. Proinflammatory cytokines, including IL-1β, are produced in gestational tissues and can locally upregulate uterine activation proteins. Premature activation of the uterus by inflammation may lead to PTB, and IL-1 has been identified as a key inducer of this condition. However, all currently available IL-1 inhibitors are large molecules that exhibit competitive antagonism properties by inhibiting all IL-1R signaling, including transcription factor NF-κB, which conveys important physiological roles. We hereby demonstrate the efficacy of a small noncompetitive (all-d peptide) IL-1R–biased ligand, termed rytvela (labeled 101.10) in delaying IL-1β–, TLR2-, and TLR4-induced PTB in mice. The 101.10 acts without significant inhibition of NF-κB, and instead selectively inhibits IL-1R downstream stress-associated protein kinases/transcription factor c-jun and Rho GTPase/Rho-associated coiled-coil–containing protein kinase signaling pathways. The 101.10 is effective at decreasing proinflammatory and/or prolabor genes in myometrium tissue and circulating leukocytes in all PTB models independently of NF-κB, undermining NF-κB role in preterm labor. In this work, biased signaling modulation of IL-1R by 101.10 uncovers a novel strategy to prevent PTB without inhibiting NF-κB.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Fatty acid receptor Gpr40 mediates neuromicrovascular degeneration induced by transarachidonic acids in rodents.

Jean-Claude Honoré; Amna Kooli; David Hamel; Thierry Alquier; José-Carlos Rivera; Christiane Quiniou; Xin Hou; Elsa Kermorvant-Duchemin; Pierre Hardy; Vincent Poitout; Sylvain Chemtob

Objective—Nitro-oxidative stress exerts a significant role in the genesis of hypoxic-ischemic (HI) brain injury. We previously reported that the &ohgr;-6 long chain fatty acids, transarachidonic acids (TAAs), which are nitrative stress-induced nonenzymatically generated arachidonic acid derivatives, trigger selective microvascular endothelial cell death in neonatal neural tissue. The primary molecular target of TAAs remains unidentified. GPR40 is a G protein–coupled receptor activated by long chain fatty acids, including &ohgr;-6; it is highly expressed in brain, but its functions in this tissue are largely unknown. We hypothesized that TAAs play a significant role in neonatal HI-induced cerebral microvascular degeneration through GPR40 activation. Approach and Results—Within 24 hours of a HI insult to postnatal day 7 rat pups, a cerebral infarct and a 40% decrease in cerebrovascular density was observed. These effects were associated with an increase in nitrative stress markers (3-nitrotyrosine immunoreactivity and TAA levels) and were reduced by treatment with nitric oxide synthase inhibitor. GPR40 was expressed in rat pup brain microvasculature. In vitro, in GPR40-expressing human embryonic kidney (HEK)-293 cells, [14C]-14E-AA (radiolabeled TAA) bound specifically, and TAA induced calcium transients, extracellular signal–regulated kinase 1/2 phosphorylation, and proapoptotic thrombospondin-1 expression. In vivo, intracerebroventricular injection of TAAs triggered thrombospondin-1 expression and cerebral microvascular degeneration in wild-type mice, but not in GPR40-null congeners. Additionally, HI-induced neurovascular degeneration and cerebral infarct were decreased in GPR40-null mice. Conclusions—GPR40 emerges as the first identified G protein–coupled receptor conveying actions of nonenzymatically generated nitro-oxidative products, specifically TAAs, and is involved in (neonatal) HI encephalopathy.


Cytokine & Growth Factor Reviews | 2016

A critical role of interleukin-1 in preterm labor

Mathieu Nadeau-Vallée; Dima Obari; Christiane Quiniou; William D. Lubell; David M. Olson; Sylvie Girard; Sylvain Chemtob

Preterm birth (PTB) is a leading cause of neonatal mortality and morbidity worldwide, and represents a heavy economic and social burden. Despite its broad etiology, PTB has been firmly linked to inflammatory processes. Pro-inflammatory cytokines are produced in gestational tissues in response to stressors and can prematurely induce uterine activation, which precedes the onset of preterm labor. Of all cytokines implicated, interleukin (IL)-1 has been largely studied, revealing a central role in preterm labor. However, currently approved IL-1-targeting therapies have failed to show expected efficacy in pre-clinical studies of preterm labor. Herein, we (a) summarize animal and human studies in which IL-1 or IL-1-targeting therapeutics are implicated with preterm labor, (b) focus on novel IL-1-targeting therapies and diagnostic tests, and (c) develop the case for commercialization and translation means to hasten their development.

Collaboration


Dive into the Christiane Quiniou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Hou

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Abran

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Pierre Hardy

Université de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge