Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christiane Ritter is active.

Publication


Featured researches published by Christiane Ritter.


Nature | 2005

Correlation of structural elements and infectivity of the HET-s prion

Christiane Ritter; Marie-Lise Maddelein; Ansgar B. Siemer; Thorsten Lührs; Matthias Ernst; Beat H. Meier; Sven J. Saupe; Roland Riek

Prions are believed to be infectious, self-propagating polymers of otherwise soluble, host-encoded proteins. This concept is now strongly supported by the recent findings that amyloid fibrils of recombinant prion proteins from yeast, Podospora anserina and mammals can induce prion phenotypes in the corresponding hosts. However, the structural basis of prion infectivity remains largely elusive because acquisition of atomic resolution structural properties of amyloid fibrils represents a largely unsolved technical challenge. HET-s, the prion protein of P. anserina, contains a carboxy-terminal prion domain comprising residues 218–289. Amyloid fibrils of HET-s(218–289) are necessary and sufficient for the induction and propagation of prion infectivity. Here, we have used fluorescence studies, quenched hydrogen exchange NMR and solid-state NMR to determine the sequence-specific positions of amyloid fibril secondary structure elements of HET-s(218–289). This approach revealed four β-strands constituted by two pseudo-repeat sequences, each forming a β-strand-turn-β-strand motif. By using a structure-based mutagenesis approach, we show that this conformation is the functional and infectious entity of the HET-s prion. These results correlate distinct structural elements with prion infectivity.


The EMBO Journal | 2003

Domain organization and structure-function relationship of the HET-s prion protein of Podospora anserina

Axelle Balguerie; Suzana Dos Reis; Christiane Ritter; Stéphane Chaignepain; Bénédicte Coulary-Salin; Vincent Forge; Katell Bathany; Ioan Lascu; Jean-Marie Schmitter; Roland Riek; Sven J. Saupe

The [Het‐s] infectious element of the fungus Podospora anserina is a prion protein involved in a genetically controlled cell death reaction termed heterokaryon incompatibility. Previous analyses indicate that [Het‐s] propagates as a self‐perpetuating amyloid aggregate. The HET‐s protein is 289 amino acids in length. Herein, we identify the region of the HET‐s protein that is responsible for amyloid formation and prion propagation. The region of HET‐s spanning residues 218–289 forms amyloid fibers in vitro and allows prion propagation in vivo. Conversely, a C‐terminal deletion in HET‐s prevents amyloid aggregation in vitro and prion propagation in vivo, and abolishes the incompatibility function. In the soluble form of HET‐s, the region from residue 1 to 227 forms a well‐folded domain while the C‐terminal region is highly flexible. Together, our data establish a domain structure–function relationship for HET‐s amyloid formation, prion propagation and incompatibility activity.


PLOS Pathogens | 2013

A Structural Basis for BRD2/4-Mediated Host Chromatin Interaction and Oligomer Assembly of Kaposi Sarcoma-Associated Herpesvirus and Murine Gammaherpesvirus LANA Proteins

Jan Hellert; Magdalena Weidner-Glunde; Joern Krausze; Ulrike Richter; Heiko Adler; Roman Fedorov; Marcel Pietrek; Jessica Rückert; Christiane Ritter; Thomas F. Schulz; Thorsten Lührs

Kaposi sarcoma-associated herpesvirus (KSHV) establishes a lifelong latent infection and causes several malignancies in humans. Murine herpesvirus 68 (MHV-68) is a related γ2-herpesvirus frequently used as a model to study the biology of γ-herpesviruses in vivo. The KSHV latency-associated nuclear antigen (kLANA) and the MHV68 mLANA (orf73) protein are required for latent viral replication and persistence. Latent episomal KSHV genomes and kLANA form nuclear microdomains, termed ‘LANA speckles’, which also contain cellular chromatin proteins, including BRD2 and BRD4, members of the BRD/BET family of chromatin modulators. We solved the X-ray crystal structure of the C-terminal DNA binding domains (CTD) of kLANA and MHV-68 mLANA. While these structures share the overall fold with the EBNA1 protein of Epstein-Barr virus, they differ substantially in their surface characteristics. Opposite to the DNA binding site, both kLANA and mLANA CTD contain a characteristic lysine-rich positively charged surface patch, which appears to be a unique feature of γ2-herpesviral LANA proteins. Importantly, kLANA and mLANA CTD dimers undergo higher order oligomerization. Using NMR spectroscopy we identified a specific binding site for the ET domains of BRD2/4 on kLANA. Functional studies employing multiple kLANA mutants indicate that the oligomerization of native kLANA CTD dimers, the characteristic basic patch and the ET binding site on the kLANA surface are required for the formation of kLANA ‘nuclear speckles’ and latent replication. Similarly, the basic patch on mLANA contributes to the establishment of MHV-68 latency in spleen cells in vivo. In summary, our data provide a structural basis for the formation of higher order LANA oligomers, which is required for nuclear speckle formation, latent replication and viral persistence.


Journal of Molecular Biology | 2010

Structural similarity between the prion domain of HET-s and a homologue can explain amyloid cross-seeding in spite of limited sequence identity.

Christian Wasmer; Agnes Zimmer; Raimon Sabaté; Alice Soragni; Sven J. Saupe; Christiane Ritter; Beat H. Meier

We describe a distant homologue of the fungal HET-s prion, which is found in the fungus Fusarium graminearum. The domain FgHET-s(218-289), which corresponds to the prion domain in HET-s from Podospora anserina, forms amyloid fibrils in vitro and is able to efficiently cross-seed HET-s(218-289) prion formation. We structurally characterize FgHET-s(218-289), which displays 38% sequence identity with HET-s(218-289). Solid-state NMR and hydrogen/deuterium exchange detected by NMR show that the fold and a number of structural details are very similar for the prion domains of the two proteins. This structural similarity readily explains why cross-seeding occurs here in spite of the sequence divergence.


Proceedings of the National Academy of Sciences of the United States of America | 2015

The 3D Structure of Kaposi Sarcoma Herpesvirus Lana C-Terminal Domain Bound to DNA.

Jan Hellert; Magdalena Weidner-Glunde; Joern Krausze; Heinrich Lünsdorf; Christiane Ritter; Thomas F. Schulz; Thorsten Lührs

Significance KSHV is the etiological agent of Kaposi sarcoma, primary effusion lymphoma, and the plasma cell variant of multicentric Castleman disease. During latency, this dsDNA tumor virus expresses only a small subset of its more than 90 ORFs. Among these is ORF73/latency-associated nuclear antigen (LANA), which acts as the origin binding protein and chromatin anchor of the extrachromosomal viral genome. This work provides detailed structural insights into the DNA-binding characteristics of LANA. We also report a previously unrecognized, third LANA binding site within the minimal replicator of Kaposi sarcoma herpesvirus. In addition to its mechanistic implications for latent viral persistence, the X-ray crystal structure of LANA bound to LANA binding site 1 DNA may assist in the tailored development of therapeutic LANA inhibitors. Kaposi sarcoma herpesvirus (KSHV) persists as a latent nuclear episome in dividing host cells. This episome is tethered to host chromatin to ensure proper segregation during mitosis. For duplication of the latent genome, the cellular replication machinery is recruited. Both of these functions rely on the constitutively expressed latency-associated nuclear antigen (LANA) of the virus. Here, we report the crystal structure of the KSHV LANA DNA-binding domain (DBD) in complex with its high-affinity viral target DNA, LANA binding site 1 (LBS1), at 2.9 Å resolution. In contrast to homologous proteins such as Epstein-Barr virus nuclear antigen 1 (EBNA-1) of the related γ-herpesvirus Epstein-Barr virus, specific DNA recognition by LANA is highly asymmetric. In addition to solving the crystal structure, we found that apart from the two known LANA binding sites, LBS1 and LBS2, LANA also binds to a novel site, denoted LBS3. All three sites are located in a region of the KSHV terminal repeat subunit previously recognized as a minimal replicator. Moreover, we show that the LANA DBD can coat DNA of arbitrary sequence by virtue of a characteristic lysine patch, which is absent in EBNA-1 of the Epstein-Barr virus. Likely, these higher-order assemblies involve the self-association of LANA into supermolecular spirals. One such spiral assembly was solved as a crystal structure of 3.7 Å resolution in the absence of DNA. On the basis of our data, we propose a model for the controlled nucleation of higher-order LANA oligomers that might contribute to the characteristic subnuclear KSHV microdomains (“LANA speckles”), a hallmark of KSHV latency.


Angewandte Chemie | 2015

Untangling a Repetitive Amyloid Sequence: Correlating Biofilm‐Derived and Segmentally Labeled Curli Fimbriae by Solid‐State NMR Spectroscopy

Tobias Schubeis; Puwei Yuan; Mumdooh Ahmed; Madhu Nagaraj; Barth-Jan van Rossum; Christiane Ritter

Curli are functional bacterial amyloids produced by an intricate biogenesis machinery. Insights into their folding and regulation can advance our understanding of amyloidogenesis. However, gaining detailed structural information of amyloids, and their tendency for structural polymorphisms, remains challenging. Herein we compare high-quality solid-state NMR spectra from biofilm-derived and recombinantly produced curli and provide evidence that they adopt a similar, well-defined β-solenoid arrangement. Curli subunits consist of five sequence repeats, resulting in severe spectral overlap. Using segmental isotope labeling, we obtained the unambiguous sequence-specific resonance assignments and secondary structure of one repeat, and demonstrate that all repeats are most likely structurally equivalent.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Structure determination of helical filaments by solid-state NMR spectroscopy

Lichun He; Benjamin Bardiaux; Mumdooh Ahmed; Johannes Spehr; Renate König; Heinrich Lünsdorf; Ulfert Rand; Thorsten Lührs; Christiane Ritter

Significance The mitochondrial antiviral signaling protein (MAVS) belongs to the emerging class of higher-order signaling machines that adopt a filamentous state on activation and propagate in a prion-like manner. Structures of helical filaments are challenging due to their size and variable symmetry parameters, which are notoriously difficult to obtain, but are a prerequisite for structure determination by electron microscopy and by solid-state NMR. Here we describe a strategy for their efficient de novo determination by a grid-search approach based exclusively on solid-state NMR data. In combination with classical NMR structure calculation, we could determine the atomic resolution structure of fully functional filaments formed by the globular caspase activation and recruitment domain of MAVS. A careful validation highlights the general applicability of this approach. The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled from its globular caspase activation and recruitment domain. Solid-state NMR (ssNMR) spectroscopy has become one of the most powerful techniques for atomic resolution structures of protein fibrils. However, for helical filaments, the determination of the correct symmetry parameters has remained a significant hurdle for any structural technique and could thus far not be precisely derived from ssNMR data. Here, we solved the atomic resolution structure of helical MAVSCARD filaments exclusively from ssNMR data. We present a generally applicable approach that systematically explores the helical symmetry space by efficient modeling of the helical structure restrained by interprotomer ssNMR distance restraints. Together with classical automated NMR structure calculation, this allowed us to faithfully determine the symmetry that defines the entire assembly. To validate our structure, we probed the protomer arrangement by solvent paramagnetic resonance enhancement, analysis of chemical shift differences relative to the solution NMR structure of the monomer, and mutagenesis. We provide detailed information on the atomic contacts that determine filament stability and describe mechanistic details on the formation of signaling-competent MAVS filaments from inactive monomers.


ChemBioChem | 2015

Unambiguous Assignment of Short- and Long-Range Structural Restraints by Solid-State NMR Spectroscopy with Segmental Isotope Labeling

Tobias Schubeis; Thorsten Lührs; Christiane Ritter

We present an efficient method for the reduction of spectral complexity in the solid‐state NMR spectra of insoluble protein assemblies, without loss of signal intensity. The approach is based on segmental isotope labeling by using the split intein DnaE from Nostoc punctiforme. We show that the segmentally 13C,15N‐labeled prion domain of HET‐s exhibits significantly reduced spectral overlap while retaining the wild‐type structure and spectral quality. A large number of unambiguous distance restraints were thus collected from a single two‐dimensional 13C,13C cross‐correlation spectrum. The observed resonances could be unambiguously identified as intramolecular without the need for preparing a dilute, less sensitive sample.


ChemBioChem | 2016

Surface Binding of TOTAPOL Assists Structural Investigations of Amyloid Fibrils by Dynamic Nuclear Polarization NMR Spectroscopy

Madhu Nagaraj; Trent W. Franks; Siavash Saeidpour; Tobias Schubeis; Hartmut Oschkinat; Christiane Ritter; Barth-Jan van Rossum

Dynamic nuclear polarization (DNP) NMR can enhance sensitivity but often comes at the price of a substantial loss of resolution. Two major factors affect spectral quality: low‐temperature heterogeneous line broadening and paramagnetic relaxation enhancement (PRE) effects. Investigations by NMR spectroscopy, isothermal titration calorimetry (ITC), and EPR revealed a new substantial affinity of TOTAPOL to amyloid surfaces, very similar to that shown by the fluorescent dye thioflavin‐T (ThT). As a consequence, DNP spectra with remarkably good resolution and still reasonable enhancement could be obtained at very low TOTAPOL concentrations, typically 400 times lower than commonly employed. These spectra yielded several long‐range constraints that were difficult to obtain without DNP. Our findings open up new strategies for structural studies with DNP NMR spectroscopy on amyloids that can bind the biradical with affinity similar to that shown towards ThT.


Biomolecular Nmr Assignments | 2015

Solid-state NMR resonance assignments of the filament-forming CARD domain of the innate immunity signaling protein MAVS.

Lichun He; Thorsten Lührs; Christiane Ritter

The mitochondrial antiviral signalling protein (MAVS) is a central signal transduction hub in the innate immune response against viral infections. Viral RNA present in the cytoplasm is detected by retinoic acid inducible gene I like receptors, which then activate MAVS via heterotypic interactions between their respective caspase activation and recruitment domains (CARD). This leads to the formation of active, high molecular weight MAVS complexes formed by homotypic interactions between the single N-terminal CARDs of MAVS. Filaments formed by the N-terminal MAVSCARD alone are sufficient to induce the autocatalytic conversion from a monomeric to an aggregated state in a prion-like manner. Here, we present the nearly complete spectroscopic 13C and 15N resonance assignments of human MAVSCARD filaments obtained from a single sample by magic angle spinning solid-state NMR spectroscopy. The corresponding secondary chemical shifts suggest that the filamentous form of MAVSCARD retains an exclusively alpha-helical fold that is very similar to the X-ray structure determined previously from monomeric MAVSCARD-maltose binding protein fusion constructs.

Collaboration


Dive into the Christiane Ritter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thorsten Lührs

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Ansgar B. Siemer

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge