Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christiane Roscher is active.

Publication


Featured researches published by Christiane Roscher.


Basic and Applied Ecology | 2004

The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community

Christiane Roscher; Jens Schumacher; Jussi Baade; Wolfgang Wilcke; Gerd Gleixner; Wolfgang W. Weisser; Bernhard Schmid; Ernst-Detlef Schulze

Abstract The focus of a new experiment, set up in Jena in spring 2002, are the effects of biodiversity on element cycles and the interaction of plant diversity with herbivores and soil fauna. The experimental design explicitly addresses criticisms provoked by previous biodiversity experiments. In particular, the choice of functional groups, the statistical separation of sampling versus complementarity effects, and testing for the effects of particular functional groups differ from previous experiments. Based on a species pool of 60 plant species common to the Central European Arrhenatherion grasslands, mixtures of one to 16 (60) species and of one to four plant functional groups were established on 90 plots (20 m × 20 m) with nested experiments. In order to test specific hypotheses 390 additional small-area plots (3.5 m × 3.5 m) were set-up. Exact replicates of all species mixtures serve to assess the variability in ecosystem responses. In a dominance experiment, the effects of interactions among nine selected highly productive species are studied. Each species is grown as monoculture replicated once. Effekte der Biodiversitat auf Elementkreislaufe und Wechselwirkungen der pflanzlichen Artenvielfalt mit Bodenfauna und Herbivoren stehen im Mitttelpunkt eines neuen Experiments, das im Fruhjahr 2002 in Jena eingerichtet wurde. Das Versuchsdesign berucksichtigt ausdrucklich die Kritik, die an den Aufbau fruherer Biodiversitatsversuche gerichtet wurde. Die Auswahl funktioneller Gruppen von Pflanzenarten, die statistischen Moglichkeiten, die Effekte des “Sampling” gegen Komplementaritat zu trennen sowie den Einflus funktioneller Gruppen zu uberprufen, unterscheiden dieses Experiment von fruheren Versuchen. Sechzig typische Pflanzenarten der zentraleuropaischen Frischwiesen (Arrhenatherion) bilden den Artenpool fur den Versuch. Auf 90 Flachen wurden Artenmischungen etabliert, die 1 bis 16 (60) Arten und 1 bis 4 funktionelle Gruppen dieser Pflanzenarten enthalten. Die Versuchsparzellen haben eine Grose von 20 m × 20 m, auf denen in genesteter Anordnung verschiedene Teilexperimente durchgefuhrt werden. Zusatzlich wurden 390 kleine Parzellen (3.5 m × 3.5 m) angelegt, um spezifische Hypothesen zu uberprufen. Alle Arten werden hier mit je einer Wiederholung als Monokulturen kultiviert. Identische Wiederholungen aller Artenmischungen sollen deren Variabilitat untersuchen. In einem Dominanz-Versuch werden die Effekte der Wechselwirkungen zwischen 9 ausgewahlten hochproduktiven Arten untersucht.


Nature | 2015

Biodiversity Increases the Resistance of Ecosystem Productivity to Climate Extremes

Forest Isbell; Dylan Craven; John Connolly; Michael Loreau; Bernhard Schmid; Carl Beierkuhnlein; T. Martin Bezemer; Catherine L. Bonin; Helge Bruelheide; Enrica De Luca; Anne Ebeling; John N. Griffin; Qinfeng Guo; Yann Hautier; Andy Hector; Anke Jentsch; Jürgen Kreyling; Vojtěch Lanta; Peter Manning; Sebastian T. Meyer; Akira Mori; Shahid Naeem; Pascal A. Niklaus; H. Wayne Polley; Peter B. Reich; Christiane Roscher; Eric W. Seabloom; Melinda D. Smith; Madhav P. Thakur; David Tilman

It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16–32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.


Ecology | 2009

Plant species richness and functional composition drive overyielding in a six‐year grassland experiment

Elisabeth Marquard; Alexandra Weigelt; Vicky M. Temperton; Christiane Roscher; Jens Schumacher; Nina Buchmann; Markus Fischer; Wolfgang W. Weisser; Bernhard Schmid

Plant diversity has been shown to increase community biomass in experimental communities, but the mechanisms resulting in such positive biodiversity effects have remained largely unknown. We used a large-scale six-year biodiversity experiment near Jena, Germany, to examine how aboveground community biomass in grasslands is affected by different components of plant diversity and thereby infer the mechanisms that may underlie positive biodiversity effects. As components of diversity we defined the number of species (1-16), number of functional groups (1-4), presence of functional groups (legumes, tall herbs, small herbs, and grasses) and proportional abundance of functional groups. Using linear models, replacement series on the level of functional groups, and additive partitioning on the level of species, we explored whether the observed biodiversity effects originated from disproportionate effects of single functional groups or species or from positive interactions between them. Aboveground community biomass was positively related to the number of species measured across functional groups as well as to the number of functional groups measured across different levels of species richness. Furthermore, increasing the number of species within functional groups increased aboveground community biomass, indicating that species within functional groups were not redundant with respect to biomass production. A positive relationship between the number of functional groups and aboveground community biomass within a particular level of species richness suggested that complementarity was larger between species belonging to different rather than to the same functional groups. The presence of legumes or tall herbs had a strong positive impact on aboveground community biomass whereas the presence of small herbs or grasses had on average no significant effect. Two- and three-way interactions between functional group presences were weak, suggesting that their main effects were largely additive. Replacement series analyses on the level of functional groups revealed strong transgressive overyielding and relative yields >1, indicating facilitation. On the species level, we found strong complementarity effects that increased over time while selection effects due to disproportionate contributions of particular species decreased over time. We conclude that transgressive overyielding between functional groups and species richness effects within functional groups caused the positive biodiversity effects on aboveground community biomass in our experiment.


PLOS ONE | 2012

Using Plant Functional Traits to Explain Diversity–Productivity Relationships

Christiane Roscher; Jens Schumacher; Marlén Gubsch; Annett Lipowsky; Alexandra Weigelt; Nina Buchmann; Bernhard Schmid; Ernst-Detlef Schulze

Background The different hypotheses proposed to explain positive species richness–productivity relationships, i.e. selection effect and complementarity effect, imply that plant functional characteristics are at the core of a mechanistic understanding of biodiversity effects. Methodology/Principal Findings We used two community-wide measures of plant functional composition, (1) community-weighted means of trait values (CWM) and (2) functional trait diversity based on Rao’s quadratic diversity (FDQ) to predict biomass production and measures of biodiversity effects in experimental grasslands (Jena Experiment) with different species richness (2, 4, 8, 16 and 60) and different functional group number and composition (1 to 4; legumes, grasses, small herbs, tall herbs) four years after establishment. Functional trait composition had a larger predictive power for community biomass and measures of biodiversitity effects (40–82% of explained variation) than species richness per se (<1–13% of explained variation). CWM explained a larger amount of variation in community biomass (80%) and net biodiversity effects (70%) than FDQ (36 and 38% of explained variation respectively). FDQ explained similar proportions of variation in complementarity effects (24%, positive relationship) and selection effects (28%, negative relationship) as CWM (27% of explained variation for both complementarity and selection effects), but for all response variables the combination of CWM and FDQ led to significant model improvement compared to a separate consideration of different components of functional trait composition. Effects of FDQ were mainly attributable to diversity in nutrient acquisition and life-history strategies. The large spectrum of traits contributing to positive effects of CWM on biomass production and net biodiversity effects indicated that effects of dominant species were associated with different trait combinations. Conclusions/Significance Our results suggest that the identification of relevant traits and the relative impacts of functional identity of dominant species and functional diversity are essential for a mechanistic understanding of the role of plant diversity for ecosystem processes such as aboveground biomass production.


PLOS ONE | 2011

Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term.

Nico Eisenhauer; Alexandru Milcu; Alexander C.W. Sabais; Holger Bessler; Johanna Brenner; Christof Engels; Bernhard Klarner; Mark Maraun; Stephan Partsch; Christiane Roscher; Felix Schonert; Vicky M. Temperton; Karolin Thomisch; Alexandra Weigelt; Wolfgang W. Weisser; Stefan Scheu

Background One of the most significant consequences of contemporary global change is the rapid decline of biodiversity in many ecosystems. Knowledge of the consequences of biodiversity loss in terrestrial ecosystems is largely restricted to single ecosystem functions. Impacts of key plant functional groups on soil biota are considered to be more important than those of plant diversity; however, current knowledge mainly relies on short-term experiments. Methodology/Principal Findings We studied changes in the impacts of plant diversity and presence of key functional groups on soil biota by investigating the performance of soil microorganisms and soil fauna two, four and six years after the establishment of model grasslands. The results indicate that temporal changes of plant community effects depend on the trophic affiliation of soil animals: plant diversity effects on decomposers only occurred after six years, changed little in herbivores, but occurred in predators after two years. The results suggest that plant diversity, in terms of species and functional group richness, is the most important plant community property affecting soil biota, exceeding the relevance of plant above- and belowground productivity and the presence of key plant functional groups, i.e. grasses and legumes, with the relevance of the latter decreasing in time. Conclusions/Significance Plant diversity effects on biota are not only due to the presence of key plant functional groups or plant productivity highlighting the importance of diverse and high-quality plant derived resources, and supporting the validity of the singular hypothesis for soil biota. Our results demonstrate that in the long term plant diversity essentially drives the performance of soil biota questioning the paradigm that belowground communities are not affected by plant diversity and reinforcing the importance of biodiversity for ecosystem functioning.


Proceedings of the National Academy of Sciences of the United States of America | 2011

More diverse plant communities have higher functioning over time due to turnover in complementary dominant species

Eric Allan; Wolfgang W. Weisser; Alexandra Weigelt; Christiane Roscher; Markus Fischer; Helmut Hillebrand

More diverse communities have been shown to have higher and more temporally stable ecosystem functioning than less diverse ones, suggesting they should also have a consistently higher level of functioning over time. Diverse communities could maintain consistently high function because the species driving function change over time (functional turnover) or because they are more likely to contain key species with temporally stable functioning. Across 7 y in a large biodiversity experiment, we show that more diverse plant communities had consistently higher productivity, that is, a higher level of functioning over time. We identify the mechanism for this as turnover in the species driving biomass production; this was substantial, and species that were rare in some years became dominant and drove function in other years. Such high turnover allowed functionally more diverse communities to maintain high biomass over time and was associated with higher levels of complementarity effects in these communities. In contrast, turnover in communities composed of functionally similar species did not promote high biomass production over time. Thus, turnover in species promotes consistently high ecosystem function when it sustains functionally complementary interactions between species. Our results strongly reinforce the argument for conservation of high biodiversity.


Oecologia | 2006

Effects of plant diversity on invertebrate herbivory in experimental grassland

Christoph Scherber; Peter N. Mwangi; Vicky M. Temperton; Christiane Roscher; Jens Schumacher; Bernhard Schmid; Wolfgang W. Weisser

The rate at which a plant species is attacked by invertebrate herbivores has been hypothesized to depend on plant species richness, yet empirical evidence is scarce. Current theory predicts higher herbivore damage in monocultures than in species-rich mixtures. We quantified herbivore damage by insects and molluscs to plants in experimental plots established in 2002 from a species pool of 60 species of Central European Arrhenatherum grasslands. Plots differed in plant species richness (1, 2, 4, 8, 16, 60 species), number of functional groups (1, 2, 3, 4), functional group and species composition. We estimated herbivore damage by insects and molluscs at the level of transplanted plant individuals (“phytometer” species Plantago lanceolata, Trifoliumpratense, Rumexacetosa) and of the entire plant community during 2003 and 2004. In contrast to previous studies, our design allows specific predictions about the relative contributions of functional diversity, plant functional identity, and species richness in relation to herbivory. Additionally, the phytometer approach is new to biodiversity-herbivory studies, allowing estimates of species-specific herbivory rates within the larger biodiversity-ecosystem functioning context. Herbivory in phytometers and experimental communities tended to increase with plant species richness and the number of plant functional groups, but the effects were rarely significant. Herbivory in phytometers was in some cases positively correlated with community biomass or leaf area index. The most important factor influencing invertebrate herbivory was the presence of particular plant functional groups. Legume (grass) presence strongly increased (decreased) herbivory at the community level. The opposite pattern was found for herbivory in T. pratense phytometers. We conclude that (1) plant species richness is much less important than previously thought and (2) plant functional identity is a much better predictor of invertebrate herbivory in temperate grassland ecosystems.


Ecology | 2009

Aboveground overyielding in grassland mixtures is associated with reduced biomass partitioning to belowground organs.

Holger Bessler; Vicky M. Temperton; Christiane Roscher; Nina Buchmann; Bernhard Schmid; Ernst-Detlef Schulze; Wolfgang W. Weisser; Christof Engels

We investigated effects of plant species richness in experimental grassland plots on annual above- and belowground biomass production estimated from repeated harvests and ingrowth cores, respectively. Aboveground and total biomass production increased with increasing plant species richness while belowground production remained constant. Root to shoot biomass production ratios (R/S) in mixtures were lower than expected from monoculture performance of the species present in the mixtures, showing that interactions among species led to reduced biomass partitioning to belowground organs. This change in partitioning to belowground organs was not confined to mixtures with legumes, but also measured in mixtures without legumes, and correlated with aboveground overyielding in mixtures. It is suggested that species-rich communities invest less in belowground biomass than do monocultures to extract soil resources, thus leading to increased investment into aboveground organs and overyielding.


Ecology Letters | 2008

Does biodiversity increase spatial stability in plant community biomass

Alexandra Weigelt; Jens Schumacher; Christiane Roscher; Bernhard Schmid

We tested the hypothesis that biodiversity decreases the spatial variability of biomass production between subplots taken within experimental grassland plots. Our findings supported this hypothesis if functional diversity (weighted Raos Q) was considered. Further analyses revealed that diversity in rooting depth and clonal growth form were the most important components of functional diversity stabilizing productivity. Using species or functional group richness as diversity measures there was no significant effect on spatial variability of biomass production, demonstrating the importance of the biodiversity component considered. Moreover, we found a significant increase in spatial variability of productivity with decreasing size of harvested area, suggesting small-scale heterogeneity as an important driver. The ability of diverse communities to stabilize biomass production across spatial heterogeneity may be due to complementary use of spatial niches. Nevertheless, the positive effect of functional diversity on spatial stability appears to be less pronounced than previously reported effects on temporal stability.


PLOS ONE | 2010

Diversity Promotes Temporal Stability across Levels of Ecosystem Organization in Experimental Grasslands

Raphaël Proulx; Christian Wirth; Winfried Voigt; Alexandra Weigelt; Christiane Roscher; Sabine Attinger; Jussi Baade; Romain L. Barnard; Nina Buchmann; François Buscot; Nico Eisenhauer; Markus Fischer; Gerd Gleixner; Stefan Halle; Anke Hildebrandt; Esther Kowalski; Annely Kuu; B Markus Lange; Alex Milcu; Pascal A. Niklaus; Yvonne Oelmann; Stephan Rosenkranz; Alexander C.W. Sabais; Christoph Scherber; Michael Scherer-Lorenzen; Stefan Scheu; Ernst-Detlef Schulze; Jens Schumacher; Guido Schwichtenberg; Jean-François Soussana

The diversity–stability hypothesis states that current losses of biodiversity can impair the ability of an ecosystem to dampen the effect of environmental perturbations on its functioning. Using data from a long-term and comprehensive biodiversity experiment, we quantified the temporal stability of 42 variables characterizing twelve ecological functions in managed grassland plots varying in plant species richness. We demonstrate that diversity increases stability i) across trophic levels (producer, consumer), ii) at both the system (community, ecosystem) and the component levels (population, functional group, phylogenetic clade), and iii) primarily for aboveground rather than belowground processes. Temporal synchronization across studied variables was mostly unaffected with increasing species richness. This study provides the strongest empirical support so far that diversity promotes stability across different ecological functions and levels of ecosystem organization in grasslands.

Collaboration


Dive into the Christiane Roscher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfgang Wilcke

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge