Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christianne Bandeira-Melo is active.

Publication


Featured researches published by Christianne Bandeira-Melo.


Journal of Immunology | 2000

Cyclooxygenase-2-Derived Prostaglandin E2 and Lipoxin A4 Accelerate Resolution of Allergic Edema in Angiostrongylus costaricensis-Infected Rats: Relationship with Concurrent Eosinophilia

Christianne Bandeira-Melo; Magda F. Serra; Bruno L. Diaz; Renato S.B. Cordeiro; Patrícia M.R. e Silva; Henrique Leonel Lenzi; Y. S. Bakhle; Charles N. Serhan; Marco A. Martins

In noninfected rats, challenge with allergen following local IgE sensitization induced a pleurisy marked by intense protein exudation that plateaued from 30 min to 4 h after challenge, reducing thereafter. Infection of rats with Angiostrongylus costaricensis induced a 5-fold increase in blood eosinophil numbers by 25 days postinfection, whereas the numbers of eosinophils in the pleural cavity ranged from normal to a weak increase. In infected rats, identically sensitized, challenge with Ag induced a much shorter duration of pleural edema with complete resolution by 4 h, but no change in the early edema response. In parallel, infection increased the number of eosinophils recovered from the pleural cavity at 4 h, but not at 30 min, following allergen challenge. Pretreatment with IL-5 (100 IU/kg, i.v.) also increased eosinophil numbers in blood and, after allergen challenge, shortened the duration of the pleural edema and increased pleural eosinophil numbers. There were increases in the levels of both PGE2 and lipoxin A4 (LXA4) in pleural exudate. Selective cyclooxygenase (COX)-2 inhibitors, NS-398, meloxicam, and SC-236, did not alter pleural eosinophilia, but reversed the curtailment of the edema in either infected or IL-5-pretreated rats. Pretreatment of noninfected animals with the PGE analogue, misoprostol, or two stable LXA4 analogues did not alter the magnitude of pleural exudation response, but clearly shortened its duration. These results indicate that the early resolution of allergic pleural edema observed during A. costaricensis infection coincided with a selective local eosinophilia and seemed to be mediated by COX-2-derived PGE2 and LXA4.


Journal of Immunology | 2000

Cutting Edge: Lipoxin (LX) A4 and Aspirin-Triggered 15-Epi-LXA4 Block Allergen-Induced Eosinophil Trafficking

Christianne Bandeira-Melo; Patricia T. Bozza; Bruno L. Diaz; Renato S.B. Cordeiro; Peter J. Jose; Marco A. Martins; Charles N. Serhan

Tissue eosinophilia prevention represents one of the primary targets to new anti-allergic therapies. As lipoxin A4 (LXA4) and aspirin-triggered 15-epi-LXA4 (ATL) are emerging as endogenous “stop signals” produced in distinct pathologies including some eosinophil-related pulmonary disorders, we evaluated the impact of in situ LXA4/ATL metabolically stable analogues on allergen-induced eosinophilic pleurisy in sensitized rats. LXA4/ATL analogues dramatically blocked allergic pleural eosinophil influx, while concurrently increasing circulating eosinophilia, inhibiting the earlier edema and neutrophilia associated with allergic reaction. The mechanisms underlying this LXA4/ATL-driven allergic eosinophilia blockade was independent of mast cell degranulation and involved LXA4/ATL inhibition of both IL-5 and eotaxin generation, as well as platelet activating factor action. These findings reveal LXA4/ATL as a novel class of endogenous anti-allergic mediators, capable of preventing local eosinophilia.


Journal of Immunology | 2001

Cutting Edge: Eotaxin Elicits Rapid Vesicular Transport-Mediated Release of Preformed IL-4 from Human Eosinophils

Christianne Bandeira-Melo; Kumiya Sugiyama; Lesley J. Woods; Peter F. Weller

IL-4 release is important in promoting Th2-mediated allergic and parasitic immune responses. Although human eosinophils are potential sources of IL-4, physiologic mechanisms to elicit its release have not been established. By flow cytometry and microscopy, eosinophils from normal donors uniformly contained preformed IL-4. In contrast to cytolytic IL-4 release from calcium ionophore-activated eosinophils, eotaxin and RANTES, but not IFN-γ, elicited IL-4 release by noncytotoxic mechanisms. With a dual Ab capture and detection immunofluorescent microscopic assay, IL-4 was released at discrete cell surface sites. IL-5 enhanced eotaxin-induced IL-4 release, which was mediated by G protein-coupled CCR3 receptors, detectable as early as 5 min and maximum within 1 h. IL-4 release was not diminished by transcription or protein synthesis inhibitors, but was suppressed by brefeldin A, an inhibitor of vesicle formation. Thus, CCR3-mediated signaling can rapidly mobilize IL-4 stored preformed in human eosinophils for release by vesicular transport to contribute to immune responses.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Activation of human eosinophils through leukocyte immunoglobulin-like receptor 7

Nicodemus Tedla; Christianne Bandeira-Melo; Paolo Tassinari; David E. Sloane; Mary K. Samplaski; David Cosman; Luis Borges; Peter F. Weller; Jonathan P. Arm

Eosinophils are implicated prominently in allergic diseases and the host response to parasitic infections. Eosinophils may be activated in vitro by diverse classes of agonists such as immunoglobulins, lipid mediators, and cytokines. The leukocyte Ig-like receptors (LIRs) comprise a family of inhibitory and activating cell-surface receptors. Inhibitory LIRs down-regulate cellular responses through cytoplasmic immunoreceptor tyrosine-based inhibitory motifs. There are limited data on the action of the activating LIRs, which are thought to signal through the Fc receptor γ chain, which contains an immunoreceptor tyrosine-based activation motif. We now demonstrate the expression of LIR1 (inhibitory), LIR2 (inhibitory), LIR3 (inhibitory), and LIR7 (activating) on eosinophils from 4, 4, 12, and 11, respectively, of 12 healthy donors. Cross-linking of LIR7 with plate-bound antibody elicited the dose- and time-dependent release of eosinophil-derived neurotoxin and leukotriene C4. Eosinophils activated with antibodies to LIR7 embedded in gel-phase EliCell preparations showed leukotriene C4 generation at the nuclear envelope and the release of IL-12 but not IL-4 by vesicular transport. Thus, LIR7 is an activating receptor for eosinophils that elicited the release of cytotoxic granule proteins, de novo lipid mediator generation, and cytokine release through vesicular transport.


Journal of Experimental Medicine | 2002

Intracrine Cysteinyl Leukotriene Receptor–mediated Signaling of Eosinophil Vesicular Transport–mediated Interleukin-4 Secretion

Christianne Bandeira-Melo; Lesley J. Woods; Mojabeng Phoofolo; Peter F. Weller

We investigated whether cysteinyl leukotrienes (cysLT) are intracrine signal transducers that regulate human eosinophil degranulation mechanisms. Interleukin (IL)-16, eotaxin, and RANTES stimulate vesicular transport–mediated release of preformed, granule-derived IL-4 and RANTES from eosinophils and the synthesis at intracellular lipid bodies of LTC4, the dominant 5-lipoxygenase–derived eicosanoid in eosinophils. 5-Lipoxygenase inhibitors blocked IL-16–, eotaxin-, and RANTES-induced IL-4 release; but neither exogenous LTC4, LTD4, nor LTE4 elicited IL-4 release. Only after membrane permeabilization enabled cysLTs to enter eosinophils did LTC4 and LTD4 stimulate IL-4, but not RANTES, release. LTC4-elicited IL-4 release was pertussis toxin inhibitable, but inhibitors of the two known G protein–coupled cysLT receptors (cysLTRs) (CysLT1 and CysLT2) did not block LTC4-elicited IL-4 release. LTC4 was 10-fold more potent than LTD4 and at low concentrations (0.3–3 nM) elicited, and at higher concentrations (>3 nM) inhibited, IL-4 release from permeabilized eosinophils. Likewise with intact eosinophils, LTC4 export inhibitors, which increased intracellular LTC4, inhibited eotaxin-elicited IL-4 release. Thus, LTC4 acts, via an intracellular cysLTR distinct from CysLT1 or CysLT2, as a signal transducer to selectively regulate IL-4 release. These results demonstrate that LTC4, well recognized as a paracrine mediator, may also dynamically govern inflammatory and immune responses as an intracrine mediator of eosinophil cytokine secretion.


Prostaglandins Leukotrienes and Essential Fatty Acids | 2011

Lipid body function in eicosanoid synthesis: An update

Patricia T. Bozza; Ilka Bakker-Abreu; Roberta Navarro-Xavier; Christianne Bandeira-Melo

Eicosanoids (prostaglandins, leukotrienes and lipoxins) are signaling lipids derived from arachidonic acid metabolism that have important roles in physiological and pathological processes. Lately, intracellular compartmentalization of eicosanoid-synthetic machinery has emerged as a key component in the regulation of eicosanoid synthesis and functions. Over the past years substantial progresses have been made demonstrating that precursors and enzymes involved in eicosanoid synthesis localize at lipid bodies (also known as lipid droplets) and lipid bodies are distinct sites for eicosanoid generation. Here we will review the current knowledge on the functions of lipid bodies as specialized intracellular sites of compartmentalization of signaling with major roles in eicosanoid formation within cells engaged in inflammatory, infectious and neoplastic process.


Prostaglandins Leukotrienes and Essential Fatty Acids | 2003

Eosinophils and cysteinyl leukotrienes

Christianne Bandeira-Melo; Peter F. Weller

Eosinophils are the main source of the cysteinyl leukotrienes, LTC(4)/D(4)/E(4), which are lipid mediators that play major roles in the pathogenesis of asthma and other forms of allergic inflammation. Here, we review the mechanisms governing eosinophil LTC(4) synthesis, focusing on the distinct intracellular domains that regulate eicosanoid formation and function within eosinophils. Cysteinyl leukotrienes exert their actions by engaging specific receptors. As recently shown, eosinophils express CysLT1 and CysLT2, the only cloned receptors for cysteinyl leukotrienes. Therefore, here we also present some of the new findings regarding the paracrine/autocrine activation of these CysLT receptors on eosinophils, and discuss some data on novel intracrine effects of LTC(4) triggered by a putative third CysLT receptor expressed intracellularly within eosinophils.


Journal of Immunology | 2007

Monocyte Chemoattractant Protein-1/CC Chemokine Ligand 2 Controls Microtubule-Driven Biogenesis and Leukotriene B4-Synthesizing Function of Macrophage Lipid Bodies Elicited by Innate Immune Response

Patricia Pacheco; Adriana Vieira-de-Abreu; Rachel N. Gomes; Giselle Barbosa-Lima; Leticia B. Wermelinger; Clarissa M. Maya-Monteiro; Adriana R. Silva; Marcelo T. Bozza; Hugo C. Castro-Faria-Neto; Christianne Bandeira-Melo; Patricia T. Bozza

Lipid bodies (also known as lipid droplets) are emerging as inflammatory organelles with roles in the innate immune response to infections and inflammatory processes. In this study, we identified MCP-1 as a key endogenous mediator of lipid body biogenesis in infection-driven inflammatory disorders and we described the cellular mechanisms and signaling pathways involved in the ability of MCP-1 to regulate the biogenesis and leukotriene B4 (LTB4) synthetic function of lipid bodies. In vivo assays in MCP-1−/− mice revealed that endogenous MCP-1 produced during polymicrobial infection or LPS-driven inflammatory responses has a critical role on the activation of lipid body-assembling machinery, as well as on empowering enzymatically these newly formed lipid bodies with LTB4 synthetic function within macrophages. MCP-1 triggered directly the rapid biogenesis of distinctive LTB4-synthesizing lipid bodies via CCR2-driven ERK- and PI3K-dependent intracellular signaling in in vitro-stimulated macrophages. Disturbance of microtubule organization by microtubule-active drugs demonstrated that MCP-1-induced lipid body biogenesis also signals through a pathway dependent on microtubular dynamics. Besides biogenic process, microtubules control LTB4-synthesizing function of MCP-1-elicited lipid bodies, in part by regulating the compartmentalization of key proteins, as adipose differentiation-related protein and 5-lipoxygenase. Therefore, infection-elicited MCP-1, besides its known CCR2-driven chemotactic function, appears as a key activator of lipid body biogenic and functional machineries, signaling through a microtubule-dependent manner.


Journal of Immunology | 2002

IL-16 Promotes Leukotriene C4 and IL-4 Release from Human Eosinophils via CD4- and Autocrine CCR3-Chemokine-Mediated Signaling

Christianne Bandeira-Melo; Kumiya Sugiyama; Lesley J. Woods; Mojabeng Phoofolo; William W. Cruikshank; Peter F. Weller

Human eosinophils are potential sources of inflammatory and immunomodulatory mediators, including cysteinyl leukotrienes, chemokines, and cytokines, which are pertinent to allergic inflammation. We evaluated the means by which IL-16, a recognized eosinophil chemoattractant, might act on eosinophils to affect their capacity to release leukotriene C4 (LTC4) or their preformed stores of chemokines (eotaxin, RANTES) or Th1 (IL-12) or Th2 (IL-4) cytokines. IL-16 dose dependently (0.01–100 nM) elicited new lipid body formation, intracellular LTC4 formation at lipid bodies, and priming for enhanced calcium ionophore-activated LTC4 release. IL-16 also elicited brefeldin A-inhibitable, vesicular transport-mediated release of preformed IL-4, but not IL-12, from eosinophils. CD4 is a recognized IL-16R, and accordingly anti-CD4 Fab, soluble CD4, and a CD4 domain 4-based IL-16 blocking peptide inhibited the actions of IL-16 on eosinophils. Although CD4 is not G-protein coupled, pertussis toxin inhibited IL-16-induced eosinophil activation. IL-16 actions were found to be mediated by the autocrine activity, not of platelet-activating factor, but rather of endogenous CCR3-acting chemokines. IL-16 induced the rapid vesicular transport-mediated release of RANTES. The effects of IL-16 were blocked by CCR3 inhibitors (met-RANTES, anti-CCR3 mAb) and by neutralizing anti-eotaxin and anti-RANTES mAbs, but not by platelet-activating factor receptor antagonists (CV6209, BN52021). RANTES and eotaxin each enhanced LTC4 and IL-4 (but not IL-12) release. Therefore, IL-16 activation of eosinophils is CD4-mediated to elicit the extracellular release of preformed RANTES and eotaxin, which then in an autocrine fashion act on plasma membrane CCR3 receptors to stimulate both enhanced LTC4 production and the preferential release of IL-4, but not IL-12, from within eosinophils.


Journal of Immunological Methods | 2000

EliCell: a gel-phase dual antibody capture and detection assay to measure cytokine release from eosinophils

Christianne Bandeira-Melo; Geoffrey O. Gillard; Ionita Ghiran; Peter F. Weller

Eosinophils contain many preformed cytokines and chemokines, which are stored in specific granules along with cationic granule proteins. Mobilization and release of these granule contents can be selective and mediated by vesicular transport. We have developed a sensitive method to detect and quantitate eosinophil vesicular transport-mediated release of specific eosinophil proteins. Our EliCell assay is based on microscopic observations of individual viable eosinophils embedded in an agarose matrix that contains immobilized antibody to the protein of interest. Following stimulation of eosinophils, released protein is bound by the capture antibody at its site of release and is detected by a fluorochrome-conjugated detection antibody. We have validated this assay by evaluating interferon-gamma-induced release of RANTES from eosinophils. Extracellularly released RANTES was visualized as focal immunoflourescent staining and was quantitated by scoring the numbers of eosinophils releasing RANTES and by measuring the fluorescent intensity over individual eosinophils. In comparison with ELISA assays of RANTES released into supernatant fluids by interferon-gamma-stimulated eosinophils, EliCell assays were more sensitive enabling detection of RANTES release at earlier times and at lower levels of interferon-gamma stimulation. The EliCell assay provides a sensitive method to study the regulated release of eosinophil-derived cytokines, chemokines and other granule proteins.

Collaboration


Dive into the Christianne Bandeira-Melo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter F. Weller

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabio P. Mesquita-Santos

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge