Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christianne Gazzana Salbego is active.

Publication


Featured researches published by Christianne Gazzana Salbego.


Cellular and Molecular Neurobiology | 2002

Guanosine Enhances Glutamate Uptake in Brain Cortical Slices at Normal and Excitotoxic Conditions

Marcos Emilio dos Santos Frizzo; Diogo R. Lara; Alexandre de Souza Prokopiuk; Carmen Regla Vargas; Christianne Gazzana Salbego; Moacir Wajner; Diogo O. Souza

Abstract1. The effect of guanosine on L-[2,3-3H]glutamate uptake was investigated in brain cortical slices under normal or oxygen–glucose deprivation (OGD) conditions.2. In slices exposed to physiological conditions, guanosine (1–100 μM) stimulated glutamate uptake (up to 100%) in a concentration-dependent manner when a high (100 μM) but not a low (1 μM) concentration of glutamate was used.3. In slices submitted to OGD, guanosine 1 and 100 μM also increased 100 μM glutamate uptake (38 and 70%, respectively).4. The increasing of glutamate and taurine released to the incubation medium in cortical slices submitted to OGD were significantly attenuated by the presence of guanosine in the incubation medium.5. Guanosine prevented the increase in propidium iodide incorporation into cortical slices induced by OGD, indicating a protective role against ischemic injury.6. These results support the hypothesis of a protective role for guanosine during brain ischemia, possibly by activating glutamate uptake into neural cells.


Brain Research | 2003

Diphenyl diselenide protects rat hippocampal slices submitted to oxygen–glucose deprivation and diminishes inducible nitric oxide synthase immunocontent

Gabriele Cordenonzi Ghisleni; Lisiane O. Porciúncula; Helena Iturvides Cimarosti; João Batista Teixeira da Rocha; Christianne Gazzana Salbego; Diogo O. Souza

Diphenyl diselenide (PhSe)2 is an organic selenium compound that has been little studied. In this study we investigated the effects of (PhSe)2 (0.1-3 microM) in a classical model of in vitro brain ischemia, which consists of exposing rat hippocampal slices to oxygen-glucose deprivation (OGD). Hippocampal slices were exposed for 60 min to OGD and the cellular viability (performed by MTT assay) as well as the immunocontent of nitric oxide synthase inducible (iNOS) were evaluated after 180 min of a recovery period. OGD decreased cellular viability by 50% and increased more than twice the immunocontent of iNOS of hippocampal slices. (PhSe)2 (1 and 3 microM) added during OGD and the recovery period abolished both effects. These results demonstrate for the first time the neuroprotective effects of (PhSe)2. Although the selenium analog--ebselen--has been widely used in ischemia models, our results suggest that other selenoorganic compounds could be investigated as pharmacological tools against brain disorders.


Neuroscience | 2003

Changes in heat shock protein 27 phosphorylation and immunocontent in response to preconditioning to oxygen and glucose deprivation in organotypic hippocampal cultures.

Lauren Martins Valentim; Richard Rodnight; Augusto Bencke Geyer; Ana Paula Horn; Alexandre Altino Tavares; Helena Iturvides Cimarosti; Carlos Alexandre Netto; Christianne Gazzana Salbego

Organotypic hippocampal cultures have been recently used to study in vitro ischaemic neuronal death. Sub-lethal periods of ischaemia in vivo confer resistance to lethal insults and many studies have demonstrated the involvement of heat shock proteins in this phenomenon. We used organotypic hippocampal cultures to investigate the involvement of heat shock protein (HSP) 27 in preconditioning to oxygen and glucose deprivation. Neuronal damage was assessed using propidium iodide fluorescence; HSP27 phosphorylation and immunocontent were obtained using (32)Pi labelling followed by sodium dodecylsulfate-polyacrylamide gel electrophoresis and immunoblotting. We observed that immunocontent of HSP27 was increased after lethal or sub-lethal treatment, indicating it is a response to metabolic stress. Treatments with 5 or 10 min of oxygen and glucose deprivation (OGD) or 1- microM N-methyl-D-aspartate (NMDA) induced tolerance to 40 min of OGD associated with an increase in HSP27 immunocontent and phosphorylation. These data suggest that, in vitro, phosphorylated HSP27 might be involved in preconditioning, probably acting as a modulator of actin filaments or by the blockage of neurodegenerative processes.


Cancer Science | 2009

Resveratrol and quercetin cooperate to induce senescence‐like growth arrest in C6 rat glioma cells

Lauren Lúcia Zamin; Eduardo Cremonese Filippi-Chiela; Patrícia Dillenburg-Pilla; Fabiana Horn; Christianne Gazzana Salbego; Guido Lenz

Glioma is the most frequent and malignant primary human brain tumor with dismal prognosis despite multimodal therapy. Resveratrol and quercetin, two structurally related and naturally occurring polyphenols, are proposed to have anticancer effects. We report here that resveratrol and quercetin decreased the cell number in four glioma cell lines but not in rat astrocytes. Low doses of resveratrol (10 µM) or quercetin (25 µM) separately had no effect on apoptosis induction, but had a strong effect on caspase 3/7 activation when administered together. Western blot analyses showed that resveratrol (10 µM) and quercetin (25 µM) caused a reduction in phosphorylation of Akt, but this reduction was not sufficient by itself to mediate the effects of these polyphenols. Most important, resveratrol and quercetin chronically administered presented a strong synergism in inducing senescence‐like growth arrest. These results suggest that the combination of polyphenols can potentialize their antitumoral activity, thereby reducing the therapeutic concentration needed for glioma treatment. (Cancer Sci 2009; 100: 1655–1662)


Neurobiology of Disease | 2006

Protective effect of resveratrol against oxygen-glucose deprivation in organotypic hippocampal slice cultures : Involvement of PI3-K pathway

Lauren Lúcia Zamin; Patrícia Dillenburg-Pilla; Ricardo Argenta-Comiran; Ana Paula Horn; Fabrício Simão; Melissa Calegaro Nassif; Daniéli Gerhardt; Rudimar Luiz Frozza; Christianne Gazzana Salbego

Here we investigated the neuroprotective effect of resveratrol in an in vitro model of ischemia. We used organotypic hippocampal cultures exposed to oxygen-glucose deprivation (OGD). In OGD-vehicle exposed cultures, about 46% of the hippocampus was labeled with PI, indicating a robust percentage of cell death. When cultures were treated with resveratrol 10, 25 and 50 microM, the cell death was reduced to 22, 20 and 13% respectively. To elucidate a possible mechanism by which resveratrol exerts its neuroprotective effect, we investigated the phosphoinositide3-kinase (PI3-k) pathway using LY294002 (5 microM) and mitogen-activated protein kinase (MAPK) using PD98059 (20 microM). The resveratrol (50 microM) neuroprotection was prevented by LY294002 but was not by PD98059. Immunoblotting revealed that resveratrol 50 microM induced the phosphorylation/activation of Akt and extracellular signal-regulated kinase-1 and -2 (ERK1/2) and the phosphorylation/inactivation of glycogen synthase kinase-3beta (GSK-3beta). Our results suggest that PI3-k/Akt pathway are involved in the neuroprotective effect of resveratrol.


Theriogenology | 2004

Two-dimensional polyacrylamide gel electrophoresis of bovine seminal plasma proteins and their relation with semen freezability

Maria Ines Mascarenhas Jobim; Eneder Rosana Oberst; Christianne Gazzana Salbego; Diogo Onofre Gomes de Souza; Vera Beatriz Wald; F Tramontina; Rodrigo Costa Mattos

The objective of this study was to evaluate the low weight (10-30 kDa) protein profile of bovine seminal plasma using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and to determine if any of these proteins was associated with semen freezability. Seminal plasma was collected from 16 bulls of high or low semen freezability. Twelve protein spots were identified from the 2D gel (15%); six of these were present in all samples. Of the 12 proteins found, three spots, present in all samples, 3 (15-16 kDa), 5 (16-17 kDa), and 7 (10-12 kDa) had nonsignificant variation among bulls, regardless of their freezability classification. Four proteins were more abundant (P<0.05) in seminal plasma samples collected from bulls with high semen freezability than in samples of bulls with low semen freezability: the spots 3 (15-16 kDa, pI 4.7-5.2), 7 (11-12 kDa, pI 4.8-4.9), 11 (13-14 kDa, pI 4.0-4.5), and 23 (20-22 kDa, pI 4.8-5.2). On the other hand, spot 25 (25-26 kDa, pI 6.0-6.5) was more abundant (P<0.05) on seminal plasma samples from bulls with low semen freezability. The N-terminus sequence of protein 7 was identical to the acidic seminal fluid protein (aSFP). Protein 23 (after trypsin digestion) had structural similarity to bovine clusterin. We concluded that there were differences in the seminal plasma protein profile from bulls with low and high semen freezability; aSFP, clusterin, proteins 3 and 11 may be used as semen freezability markers; and protein 25 was related to low semen freezability.


Neuroscience Letters | 2001

An investigation of the neuroprotective effect of lithium in organotypic slice cultures of rat hippocampus exposed to oxygen and glucose deprivation

Helena Iturvides Cimarosti; Richard Rodnight; Alexandre Altino Tavares; R. Paiva; Lauren Martins Valentim; Elizabete Rocha da Rocha; Christianne Gazzana Salbego

Brain ischemia results in cellular degeneration and loss of function. Here we investigated the neuroprotective effect of lithium in an in vitro model of ischemia. Organotypic hippocampal slice cultures were exposed to oxygen and glucose deprivation. Cellular death was quantified by measuring uptake of propidium iodide (PI). Lithium chloride (0.2-1.2 mM) was added to the medium before, during and after lesion induction. A decrease in incorporation of PI was observed, indicating a neuroprotective effect in all doses tested. We also studied the effect of lithium on the phosphorylation of HSP27, a heat shock protein involved in cellular protection in its dephosphorylated state. In the lesioned hippocampus, 0.4 mM lithium chloride decreased the proportion of phosphorylated HSP27 to total HSP27. These results suggest that lithium may be useful in the treatment of brain ischemia.


Neurobiology of Learning and Memory | 2013

Free and nanoencapsulated curcumin suppress β-amyloid-induced cognitive impairments in rats: involvement of BDNF and Akt/GSK-3β signaling pathway.

Juliana Bender Hoppe; Rudimar Luiz Frozza; Cláudia Melo de Oliveira; André Meneghetti; Andressa Bernardi; Elisa Nicoloso Simões Pires; Ruy Carlos Ruver Beck; Christianne Gazzana Salbego

Alzheimers disease (AD), a neurodegenerative disorder exhibiting progressive loss of memory and cognitive functions, is characterized by the presence of neuritic plaques composed of neurofibrillary tangles and β-amyloid (Aβ) peptide. Drug delivery to the brain still remains highly challenging for the treatment of AD. Several studies have been shown that curcumin is associated with anti-amyloidogenic properties, but therapeutic application of its beneficial effects is limited. Here we investigated possible mechanisms involved in curcumin protection against Aβ(1-42)-induced cognitive impairment and, due to its poor bioavailability, we developed curcumin-loaded lipid-core nanocapsules in an attempt to improve the neuroprotective effect of this polyphenol. Animals received a single intracerebroventricular injection of Aβ(1-42) and they were administered either free curcumin or curcumin-loaded lipid-core nanocapsules (Cur-LNC) intraperitoneally for 10days. Aβ(1-42)-infused animals showed a significant impairment on learning-memory ability, which was paralleled by a significant decrease in hippocampal synaptophysin levels. Furthermore, animals exhibited activated astrocytes and microglial cells, as well as disturbance in BDNF expression and Akt/GSK-3β signaling pathway, beyond tau hyperphosphorylation. Our findings demonstrate that administration of curcumin was effective in preventing behavioral impairments, neuroinflammation, tau hyperphosphorylation as well as cell signaling disturbances triggered by Aβ in vivo. Of high interest, Cur-LNC in a dose 20-fold lower presented similar neuroprotective results compared to the effective dose of free curcumin. Considered overall, the data suggest that curcumin is a potential therapeutic agent for neurocognition and nanoencapsulation of curcumin in LNC might constitute a promising therapeutic alternative in the treatment of neurodegenerative diseases such as AD.


Journal of Nutritional Biochemistry | 2011

Resveratrol prevents oxidative stress and inhibition of Na+K+-ATPase activity induced by transient global cerebral ischemia in rats

Fabrício Simão; Aline Matté; Cristiane Matté; Flávia Mahatma Schneider Soares; Angela Terezinha de Souza Wyse; Carlos Alexandre Netto; Christianne Gazzana Salbego

Increased oxidative stress and energy metabolism deficit have been regarded as an important underlying cause for neuronal damage induced by cerebral ischemia/reperfusion (I/R) injury. In this study, we investigated the oxidative mechanisms underlying the neuroprotective effects of resveratrol, a potent polyphenol antioxidant found in grapes, on structural and biochemical abnormalities in rats subjected to global cerebral ischemia. Experimental model of transient global cerebral ischemia was induced in Wistar rats by the four vessel occlusion method for 10 min and followed by different periods of reperfusion. Nissl and fluoro jade C stained indicated extensive neuronal death at 7 days after I/R. These findings were preceded by a rapid increase in the generation of reactive oxygen species (ROS), nitric oxide (NO), lipid peroxidation, as well as by a decrease in Na(+)K(+)-ATPase activity and disrupted antioxidant defenses (enzymatic and non-enzymatic) in hippocampus and cortex. Administrating resveratrol 7 days prior to ischemia by intraperitoneal injections (30 mg/kg) significantly attenuated neuronal death in both studied structures, as well as decreased the generation of ROS, lipid peroxidation and NO content. Furthermore, resveratrol brought antioxidant and Na(+)K(+)-ATPase activity in cortex and hippocampus back to normal levels. These results support that resveratrol could be used as a preventive, or therapeutic, agent in global cerebral ischemia and suggest that scavenging of ROS contributes, at least in part, to resveratrol-induced neuroprotection.


European Journal of Neuroscience | 2012

Resveratrol prevents CA1 neurons against ischemic injury by parallel modulation of both GSK‐3β and CREB through PI3‐K/Akt pathways

Fabrício Simão; Aline Matté; Aline de Souza Pagnussat; Carlos Alexandre Netto; Christianne Gazzana Salbego

Accumulating evidence indicates that resveratrol potently protects against cerebral ischemia damage due to its oxygen free radicals scavenging and antioxidant properties. However, cellular mechanisms that may underlie the neuroprotective effects of resveratrol in brain ischemia are not fully understood yet. This study aimed to investigate the potential association between the neuroprotective effect of resveratrol and the apoptosis/survival signaling pathways, in particular the glycogen synthase kinase 3 (GSK‐3β) and cAMP response element‐binding protein (CREB) through phosphatidylinositol 3‐kinase (PI3‐K)‐dependent pathway. An experimental model of global cerebral ischemia was induced in rats by the four‐vessel occlusion method for 10 min and followed by different periods of reperfusion. Nissl staining indicated extensive neuronal death at 7 days after ischemia/reperfusion. Administration of resveratrol by i.p. injections (30 mg/kg) for 7 days before ischemia significantly attenuated neuronal death. Both GSK‐3β and CREB appear to play a critical role in resveratrol neuroprotection through the PI3‐K/Akt pathway, as resveratrol pretreatment increased the phosphorylation of Akt, GSK‐3β and CREB in 1 h in the CA1 hippocampus after ischemia/reperfusion. Furthermore, administration of LY294002, an inhibitor of PI3‐K, compromised the neuroprotective effect of resveratrol and decreased the level of p‐Akt, p‐GSK‐3β and p‐CREB after ischemic injury. Taken together, the results suggest that resveratrol protects against delayed neuronal death in the hippocampal CA1 by maintaining the pro‐survival states of Akt, GSK‐3β and CREB pathways. These data suggest that the neuroprotective effect of resveratrol may be mediated through activation of the PI3‐K/Akt signaling pathway, subsequently downregulating expression of GSK‐3β and CREB, thereby leading to prevention of neuronal death after brain ischemia in rats.

Collaboration


Dive into the Christianne Gazzana Salbego's collaboration.

Top Co-Authors

Avatar

Rudimar Luiz Frozza

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Juliana Bender Hoppe

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Helena Iturvides Cimarosti

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Carlos Alexandre Netto

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Vera Maria Treis Trindade

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Ana Paula Horn

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Ana Maria Oliveira Battastini

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Andressa Bernardi

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Lauren Lúcia Zamin

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Fabrício Simão

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge