Christina A. Rostad
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christina A. Rostad.
Nature Communications | 2016
Christopher C. Stobart; Christina A. Rostad; Zunlong Ke; Rebecca S. Dillard; Cheri M. Hampton; Joshua D. Strauss; Anne L. Hotard; Jia Meng; Raymond J. Pickles; Kaori Sakamoto; Sujin Lee; Michael G. Currier; Syed M. Moin; Barney S. Graham; Marina S. Boukhvalova; Brian E. Gilbert; Jorge Blanco; Pedro A. Piedra; Elizabeth R. Wright; Martin L. Moore
Respiratory syncytial virus (RSV) is a leading cause of infant hospitalization and there remains no pediatric vaccine. RSV live-attenuated vaccines (LAVs) have a history of safe testing in infants; however, achieving an effective balance of attenuation and immunogenicity has proven challenging. Here we seek to engineer an RSV LAV with enhanced immunogenicity. Genetic mapping identifies strain line 19 fusion (F) protein residues that correlate with pre-fusion antigen maintenance by ELISA and thermal stability of infectivity in live RSV. We generate a LAV candidate named OE4 which expresses line 19F and is attenuated by codon-deoptimization of non-structural (NS1 and NS2) genes, deletion of the small hydrophobic (SH) gene, codon-deoptimization of the attachment (G) gene and ablation of the secreted form of G. OE4 (RSV-A2-dNS1-dNS2-ΔSH-dGm-Gsnull-line19F) exhibits elevated pre-fusion antigen levels, thermal stability, immunogenicity, and efficacy despite heavy attenuation in the upper and lower airways of cotton rats.
Journal of Virology | 2016
Christina A. Rostad; Christopher C. Stobart; Brian E. Gilbert; Ray J. Pickles; Anne L. Hotard; Jia Meng; Jorge Blanco; Syed M. Moin; Barney S. Graham; Pedro A. Piedra; Martin L. Moore
ABSTRACT Although respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants, a safe and effective vaccine is not yet available. Live-attenuated vaccines (LAVs) are the most advanced vaccine candidates in RSV-naive infants. However, designing an LAV with appropriate attenuation yet sufficient immunogenicity has proven challenging. In this study, we implemented reverse genetics to address these obstacles with a multifaceted LAV design that combined the codon deoptimization of genes for nonstructural proteins NS1 and NS2 (dNS), deletion of the small hydrophobic protein (ΔSH) gene, and replacement of the wild-type fusion (F) protein gene with a low-fusion RSV subgroup B F consensus sequence of the Buenos Aires clade (BAF). This vaccine candidate, RSV-A2-dNS-ΔSH-BAF (DB1), was attenuated in two models of primary human airway epithelial cells and in the upper and lower airways of cotton rats. DB1 was also highly immunogenic in cotton rats and elicited broadly neutralizing antibodies against a diverse panel of recombinant RSV strains. When vaccinated cotton rats were challenged with wild-type RSV A, DB1 reduced viral titers in the upper and lower airways by 3.8 log10 total PFU and 2.7 log10 PFU/g of tissue, respectively, compared to those in unvaccinated animals (P < 0.0001). DB1 was thus attenuated, highly immunogenic, and protective against RSV challenge in cotton rats. DB1 is the first RSV LAV to incorporate a low-fusion F protein as a strategy to attenuate viral replication and preserve immunogenicity. IMPORTANCE RSV is a leading cause of infant hospitalizations and deaths. The development of an effective vaccine for this high-risk population is therefore a public health priority. Although live-attenuated vaccines have been safely administered to RSV-naive infants, strategies to balance vaccine attenuation with immunogenicity have been elusive. In this study, we introduced a novel strategy to attenuate a recombinant RSV vaccine by incorporating a low-fusion, subgroup B F protein in the genetic background of codon-deoptimized nonstructural protein genes and a deleted small hydrophobic protein gene. The resultant vaccine candidate, DB1, was attenuated, highly immunogenic, and protective against RSV challenge in cotton rats.
Viruses | 2016
Christina A. Rostad; Michael C. Currier; Martin L. Moore
The advent of virus reverse genetics has enabled the incorporation of genetically encoded reporter proteins into replication-competent viruses. These reporters include fluorescent proteins which have intrinsic chromophores that absorb light and re-emit it at lower wavelengths, and bioluminescent proteins which are luciferase enzymes that react with substrates to produce visible light. The incorporation of these reporters into replication-competent viruses has revolutionized our understanding of molecular virology and aspects of viral tropism and transmission. Reporter viruses have also enabled the development of high-throughput assays to screen antiviral compounds and antibodies and to perform neutralization assays. However, there remain technical challenges with the design of replication-competent reporter viruses, and each reporter has unique advantages and disadvantages for specific applications. This review describes currently available reporters, design strategies for incorporating reporters into replication-competent paramyxoviruses and orthomyxoviruses, and the variety of applications for which these tools can be utilized both in vitro and in vivo.
Pediatric Infectious Disease Journal | 2015
Christina A. Rostad; Rebecca Pass Philipsborn; Frank E. Berkowitz
A neonate and his mother presented with fever and erythroderma. The mother met full diagnostic criteria for staphylococcal toxic shock syndrome, whereas the neonate lacked hypotension and multiorgan dysfunction. A wound culture from the neonates circumcision site grew methicillin-resistant Staphylococcus aureus containing the tst gene. This provides evidence of the first reported case of toxic shock syndrome caused by methicillin-resistant Staphylococcus aureus in a mother-newborn pair.
Viruses | 2018
Zunlong Ke; Rebecca S. Dillard; Tatiana Chirkova; Fredrick Leon; Christopher C. Stobart; Cheri M. Hampton; Joshua D. Strauss; Devi Rajan; Christina A. Rostad; Jeannette V. Taylor; Raven Shah; Mengtian Jin; Tina V. Hartert; R.S. Peebles; Barney S. Graham; Martin L. Moore; Larry J. Anderson; Elizabeth R. Wright
Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in young children. With repeat infections throughout life, it can also cause substantial disease in the elderly and in adults with compromised cardiac, pulmonary and immune systems. RSV is a pleomorphic enveloped RNA virus in the Pneumoviridae family. Recently, the three-dimensional (3D) structure of purified RSV particles has been elucidated, revealing three distinct morphological categories: spherical, asymmetric, and filamentous. However, the native 3D structure of RSV particles associated with or released from infected cells has yet to be investigated. In this study, we have established an optimized system for studying RSV structure by imaging RSV-infected cells on transmission electron microscopy (TEM) grids by cryo-electron tomography (cryo-ET). Our results demonstrate that RSV is filamentous across several virus strains and cell lines by cryo-ET, cryo-immuno EM, and thin section TEM techniques. The viral filament length varies from 0.5 to 12 μm and the average filament diameter is approximately 130 nm. Taking advantage of the whole cell tomography technique, we have resolved various stages of RSV assembly. Collectively, our results can facilitate the understanding of viral morphogenesis in RSV and other pleomorphic enveloped viruses.
Journal of Virology | 2017
Christina A. Rostad; Christopher C. Stobart; Sean O. Todd; Samuel A. Molina; Sujin Lee; Jorge Blanco; Martin L. Moore
ABSTRACT Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants, and an effective vaccine is not yet available. We previously generated an RSV live-attenuated vaccine (LAV) candidate, DB1, which was attenuated by a low-fusion subgroup B F protein (BAF) and codon-deoptimized nonstructural protein genes. DB1 was immunogenic and protective in cotton rats but lacked thermostability and stability of the prefusion conformation of F compared to strains with the line19F gene. We hypothesized that substitution of unique residues from the thermostable A2-line19F strain could thermostabilize DB1 and boost its immunogenicity. We therefore substituted 4 unique line19F residues into the BAF protein of DB1 by site-directed mutagenesis and rescued the recombinant virus, DB1-QUAD. Compared to DB1, DB1-QUAD had improved thermostability at 4°C and higher levels of prefusion F as measured by enzyme-linked immunosorbent assays (ELISAs). DB1-QUAD was attenuated in normal human bronchial epithelial cells, in BALB/c mice, and in cotton rats but grew to wild-type titers in Vero cells. In mice, DB1-QUAD was highly immunogenic and generated significantly higher neutralizing antibody titers to a panel of RSV A and B strains than did DB1. DB1-QUAD was also efficacious against wild-type RSV challenge in mice and cotton rats. Thus, substitution of unique line19F residues into RSV LAV DB1 enhanced vaccine thermostability, incorporation of prefusion F, and immunogenicity and generated a promising vaccine candidate that merits further investigation. IMPORTANCE We boosted the thermostability and immunogenicity of an RSV live-attenuated vaccine candidate by substituting 4 unique residues from the RSV line19F protein into the F protein of the heterologous vaccine strain DB1. The resultant vaccine candidate, DB1-QUAD, was thermostable, attenuated in vivo, highly immunogenic, and protective against RSV challenge in mice and cotton rats.
Journal of the Pediatric Infectious Diseases Society | 2015
Christina A. Rostad; Frank E. Berkowitz
A 2-year-old African American male presented with a 3-day history of low-grade fever, nasal congestion, and decreased appetite. One day prior to admission, he developed tachypnea and grunting with a temperature of 102°F. He presented to an outside hospital, where a chest radiograph was obtained. He was diagnosed with acute suppurative otitis media and was discharged home with a prescription for amoxicillin. The next day, he was called back to the hospital due to abnormal findings identified on the chest radiograph by the radiologist. Past Medical History
Journal of Heart and Lung Transplantation | 2017
Christina A. Rostad; Karla Wehrheim; James K. Kirklin; David C. Naftel; Elizabeth Pruitt; Timothy M. Hoffman; Thomas L’Ecuyer; Katie Berkowitz; William T. Mahle; Janet Scheel
Journal of Virology | 2017
Christina A. Rostad; Christopher C. Stobart; Sean O. Todd; Samuel A. Molina; Sujin Lee; Jorge Blanco; Martin L. Moore
Journal of Heart and Lung Transplantation | 2016
Christina A. Rostad; K. Wehrheim; K. Berkowitz; Timothy M. Hoffman; T. L’Ecuyer; William T. Mahle; Elizabeth Pruitt; James K. Kirklin; Janet Scheel