Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina Brandenberger is active.

Publication


Featured researches published by Christina Brandenberger.


Small | 2010

Quantitative Evaluation of Cellular Uptake and Trafficking of Plain and Polyethylene Glycol-Coated Gold Nanoparticles

Christina Brandenberger; Christian Mühlfeld; Zulqurnain Ali; Anke-Gabriele Lenz; Otmar Schmid; Wolfgang J. Parak; Peter Gehr; Barbara Rothen-Rutishauser

This study addresses the cellular uptake and intracellular trafficking of 15-nm gold nanoparticles (NPs), either plain (i.e., stabilized with citrate) or coated with polyethylene glycol (PEG), exposed to human alveolar epithelial cells (A549) at the air-liquid interface for 1, 4, and 24 h. Quantitative analysis by stereology on transmission electron microscopy images reveals a significant, nonrandom intracellular distribution for both NP types. No particles are observed in the nucleus, mitochondria, endoplasmic reticulum, or golgi. The cytosol is not a preferred cellular compartment for both NP types, although significantly more PEG-coated than citrate-stabilized NPs are present there. The preferred particle localizations are vesicles of different sizes (<150, 150-1000, >1000 nm). This is observed for both NP types and indicates a predominant uptake by endocytosis. Subsequent inhibition of caveolin- and clathrin-mediated endocytosis by methyl-beta-cyclodextrin (MbetaCD) results in a significant reduction of intracellular NPs. The inhibition, however, is more pronounced for PEG-coated than citrate-stabilized NPs. The latter are mostly found in larger vesicles; therefore, they are potentially taken up by macropinocytosis, which is not inhibited by MbetaCD. With prolonged exposure times, both NPs are preferentially localized in larger-sized intracellular vesicles such as lysosomes, thus indicating intracellular particle trafficking. This quantitative evaluation reveals that NP surface coatings modulate endocytotic uptake pathways and cellular NP trafficking. Other nonendocytotic entry mechanisms are found to be involved as well, as indicated by localization of a minority of PEG-coated NPs in the cytosol.


Toxicology and Applied Pharmacology | 2010

Effects and uptake of gold nanoparticles deposited at the air–liquid interface of a human epithelial airway model

Christina Brandenberger; Barbara Rothen-Rutishauser; Christian Mühlfeld; Otmar Schmid; George A. Ferron; Konrad Maier; Peter Gehr; Anke Gabriele Lenz

The impact of nanoparticles (NPs) in medicine and biology has increased rapidly in recent years. Gold NPs have advantageous properties such as chemical stability, high electron density and affinity to biomolecules, making them very promising candidates as drug carriers and diagnostic tools. However, diverse studies on the toxicity of gold NPs have reported contradictory results. To address this issue, a triple cell co-culture model simulating the alveolar lung epithelium was used and exposed at the air-liquid interface. The cell cultures were exposed to characterized aerosols with 15 nm gold particles (61 ng Au/cm2 and 561 ng Au/cm2 deposition) and incubated for 4 h and 24 h. Experiments were repeated six times. The mRNA induction of pro-inflammatory (TNFalpha, IL-8, iNOS) and oxidative stress markers (HO-1, SOD2) was measured, as well as protein induction of pro- and anti-inflammatory cytokines (IL-1, IL-2, IL-4, IL-6, IL-8, IL-10, GM-CSF, TNFalpha, INFgamma). A pre-stimulation with lipopolysaccharide (LPS) was performed to further study the effects of particles under inflammatory conditions. Particle deposition and particle uptake by cells were analyzed by transmission electron microscopy and design-based stereology. A homogeneous deposition was revealed, and particles were found to enter all cell types. No mRNA induction due to particles was observed for all markers. The cell culture system was sensitive to LPS but gold particles did not cause any synergistic or suppressive effects. With this experimental setup, reflecting the physiological conditions more precisely, no adverse effects from gold NPs were observed. However, chronic studies under in vivo conditions are needed to entirely exclude adverse effects.


Particle and Fibre Toxicology | 2009

A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles

Anke Gabriele Lenz; Erwin Karg; Bernd Lentner; Vlad Dittrich; Christina Brandenberger; Barbara Rothen-Rutishauser; Holger Schulz; George A. Ferron; Otmar Schmid

BackgroundEngineered nanoparticles are becoming increasingly ubiquitous and their toxicological effects on human health, as well as on the ecosystem, have become a concern. Since initial contact with nanoparticles occurs at the epithelium in the lungs (or skin, or eyes), in vitro cell studies with nanoparticles require dose-controlled systems for delivery of nanoparticles to epithelial cells cultured at the air-liquid interface.ResultsA novel air-liquid interface cell exposure system (ALICE) for nanoparticles in liquids is presented and validated. The ALICE generates a dense cloud of droplets with a vibrating membrane nebulizer and utilizes combined cloud settling and single particle sedimentation for fast (~10 min; entire exposure), repeatable (<12%), low-stress and efficient delivery of nanoparticles, or dissolved substances, to cells cultured at the air-liquid interface. Validation with various types of nanoparticles (Au, ZnO and carbon black nanoparticles) and solutes (such as NaCl) showed that the ALICE provided spatially uniform deposition (<1.6% variability) and had no adverse effect on the viability of a widely used alveolar human epithelial-like cell line (A549). The cell deposited dose can be controlled with a quartz crystal microbalance (QCM) over a dynamic range of at least 0.02-200 μg/cm2. The cell-specific deposition efficiency is currently limited to 0.072 (7.2% for two commercially available 6-er transwell plates), but a deposition efficiency of up to 0.57 (57%) is possible for better cell coverage of the exposure chamber.Dose-response measurements with ZnO nanoparticles (0.3-8.5 μg/cm2) showed significant differences in mRNA expression of pro-inflammatory (IL-8) and oxidative stress (HO-1) markers when comparing submerged and air-liquid interface exposures. Both exposure methods showed no cellular response below 1 μg/cm2 ZnO, which indicates that ZnO nanoparticles are not toxic at occupationally allowed exposure levels.ConclusionThe ALICE is a useful tool for dose-controlled nanoparticle (or solute) exposure of cells at the air-liquid interface. Significant differences between cellular response after ZnO nanoparticle exposure under submerged and air-liquid interface conditions suggest that pharmaceutical and toxicological studies with inhaled (nano-)particles should be performed under the more realistic air-liquid interface, rather than submerged cell conditions.


Toxicology Letters | 2011

A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro

Tina Thurnherr; Christina Brandenberger; Kathrin Fischer; Liliane Diener; Pius Manser; Xenia Maeder-Althaus; Jean-Pierre Kaiser; Harald F. Krug; Barbara Rothen-Rutishauser; Peter Wick

The close resemblance of carbon nanotubes to asbestos fibers regarding their high aspect ratio, biopersistence and reactivity increases public concerns on the widespread use of these materials. The purpose of this study was not only to address the acute adverse effects of industrially produced multiwalled carbon nanotubes (MWCNTs) on human lung and immune cells in vitro but also to further understand if their accumulation and biopersistence leads to long-term consequences or induces adaptive changes in these cells. In contrast to asbestos fibers, pristine MWCNTs did not induce overt cell death in A549 lung epithelial cells and Jurkat T lymphocytes after acute exposure to high doses of this material (up to 30 μg/ml). Nevertheless, very high levels of reactive oxygen species (ROS) and decreased metabolic activity were observed which might affect long-term viability of these cells. However, the continuous presence of low amounts of MWCNTs (0.5 μg/ml) for 6 months did not have major adverse long-term effects although large amounts of nanotubes accumulated at least in A549 cells. Moreover, MWCNTs did not appear to induce adaptive mechanisms against particle stress in long-term treated A549 cells. Our study demonstrates that despite the high potential for ROS formation, pristine MWCNTs can accumulate and persist within cells without having major long-term consequences or inducing adaptive mechanisms.


Particle and Fibre Toxicology | 2010

Intracellular imaging of nanoparticles: Is it an elemental mistake to believe what you see?

Christina Brandenberger; Martin J. D. Clift; Dimitri Vanhecke; Christian Mühlfeld; Vicki Stone; Peter Gehr; Barbara Rothen-Rutishauser

In order to understand how nanoparticles (NPs <100 nm) interact with cellular systems, potentially causing adverse effects, it is important to be able to detect and localize them within cells. Due to the small size of NPs, transmission electron microscopy (TEM) is an appropriate technique to use for visualizing NPs inside cells, since light microscopy fails to resolve them at a single particle level. However, the presence of other cellular and non-cellular nano-sized structures in TEM cell samples, which may resemble NPs in size, morphology and electron density, can obstruct the precise intracellular identification of NPs. Therefore, elemental analysis is recommended to confirm the presence of NPs inside the cell. The present study highlights the necessity to perform elemental analysis, specifically energy filtering TEM, to confirm intracellular NP localization using the example of quantum dots (QDs). Recently, QDs have gained increased attention due to their fluorescent characteristics, and possible applications for biomedical imaging have been suggested. Nevertheless, potential adverse effects cannot be excluded and some studies point to a correlation between intracellular particle localization and toxic effects.J774.A1 murine macrophage-like cells were exposed to NH2 polyethylene (PEG) QDs and elemental co-localization analysis of two elements present in the QDs (sulfur and cadmium) was performed on putative intracellular QDs with electron spectroscopic imaging (ESI). Both elements were shown on a single particle level and QDs were confirmed to be located inside intracellular vesicles. Nevertheless, ESI analysis showed that not all nano-sized structures, initially identified as QDs, were confirmed. This observation emphasizes the necessity to perform elemental analysis when investigating intracellular NP localization using TEM.


Nanotoxicology | 2011

Quantum dot cytotoxicity in vitro: An investigation into the cytotoxic effects of a series of different surface chemistries and their core/shell materials

Martin J. D. Clift; Julia Varet; Steven M. Hankin; Bill Brownlee; Alan Davidson; Christina Brandenberger; Barbara Rothen-Rutishauser; David M. Brown; Vicki Stone

Abstract The aim of this study was to assess the effects of a series of different surface coated quantum dots (QDs) (organic, carboxylated [COOH] and amino [NH2] polytethylene glycol [PEG]) on J774.A1 macrophage cell viability and to further determine which part of the QDs cause such toxicity. Cytotoxic examination (MTT assay and LDH release) showed organic QDs to induce significant cytotoxicity up to 48 h, even at a low particle concentration (20 nM), whilst both COOH and NH2 (PEG) QDs caused reduced cell viability and cell membrane permeability after 24 and 48 h exposure at 80 nM. Subsequent analysis of the elements that constitute the QD core, core/shell and (organic QD) surface coating showed that the surface coating drives QD toxicity. Elemental analysis (ICP-AES) after 48 h, however, also observed a release of Cd from organic QDs. In conclusion, both the specific surface coating and core material can have a significant impact on QD toxicity.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

Quantification of gold nanoparticle cell uptake under controlled biological conditions and adequate resolution.

Barbara Rothen-Rutishauser; Dagmar A Kuhn; Zulqurnain Ali; Michael Gasser; Faheem Amin; Wolfgang J. Parak; Dimitri Vanhecke; Alke Fink; Peter Gehr; Christina Brandenberger

AIM We examined cellular uptake mechanisms of fluorescently labeled polymer-coated gold nanoparticles (NPs) under different biological conditions by two quantitative, microscopic approaches. MATERIALS & METHODS Uptake mechanisms were evaluated using endocytotic inhibitors that were tested for specificity and cytotoxicity. Cellular uptake of gold NPs was analyzed either by laser scanning microscopy or transmission electron microscopy, and quantified by means of stereology using cells from the same experiment. RESULTS Optimal inhibitor conditions were only achieved with chlorpromazine (clathrin-mediated endocytosis) and methyl-β-cyclodextrin (caveolin-mediated endocytosis). A significant methyl-β-cyclodextrin-mediated inhibition (63-69%) and chlorpromazine-mediated increase (43-98%) of intracellular NPs was demonstrated with both imaging techniques, suggesting a predominant uptake via caveolin-medicated endocytois. Transmission electron microscopy imaging revealed more than 95% of NPs localized in intracellular vesicles and approximately 150-times more NP events/cell were detected than by laser scanning microscopy. CONCLUSION We emphasize the importance of studying NP-cell interactions under controlled experimental conditions and at adequate microscopic resolution in combination with stereology.


PLOS ONE | 2013

Experimental induction of pulmonary fibrosis in horses with the gammaherpesvirus equine herpesvirus 5.

Kurt J. Williams; N. Edward Robinson; Ailam Lim; Christina Brandenberger; Roger K. Maes; Ashley L. Behan; Steven R. Bolin

Gammaherpesviruses (γHV) are implicated in the pathogenesis of pulmonary fibrosis in humans and murine models of lung fibrosis, however there is little direct experimental evidence that such viruses induce lung fibrosis in the natural host. The equine γHV EHV 5 is associated with equine multinodular pulmonary fibrosis (EMPF), a progressive fibrosing lung disease in its natural host, the horse. Experimental reproduction of EMPF has not been attempted to date. We hypothesized that inoculation of EHV 5 isolated from cases of EMPF into the lungs of clinically normal horses would induce lung fibrosis similar to EMPF. Neutralizing antibody titers were measured in the horses before and after inoculation with EHV 5. PCR and virus isolation was used to detect EHV 5 in antemortem blood and BAL samples, and in tissues collected postmortem. Nodular pulmonary fibrosis and induction of myofibroblasts occurred in EHV 5 inoculated horses. Mean lung collagen in EHV 5 inoculated horses (80 µg/mg) was significantly increased compared to control horses (26 µg/mg) (p < 0.5), as was interstitial collagen (32.6% ± 1.2% vs 23% ± 1.4%) (mean ± SEM; p < 0.001). Virus was difficult to detect in infected horses throughout the experiment, although EHV 5 antigen was detected in the lung by immunohistochemistry. We conclude that the γHV EHV 5 can induce lung fibrosis in the horse, and hypothesize that induction of fibrosis occurs while the virus is latent within the lung. This is the first example of a γHV inducing lung fibrosis in the natural host.


Nanotoxicology | 2014

Nose-to-brain transport of aerosolised quantum dots following acute exposure

Laurie E. Hopkins; Esther S. Patchin; Po Lin Chiu; Christina Brandenberger; Suzette Smiley-Jewell; Kent E. Pinkerton

Abstract Nanoparticles are of wide interest due to their potential use for diverse commercial applications. Quantum dots (QDs) are semiconductor nanocrystals possessing unique optical and electrical properties. Although QDs are commonly made of cadmium, a metal known to have neurological effects, potential transport of QDs directly to the brain has not been assessed. This study evaluated whether QDs (CdSe/ZnS nanocrystals) could be transported from the olfactory tract to the brain via inhalation. Adult C57BL/6 mice were exposed to an aerosol of QDs for 1 h via nasal inhalation, and nanoparticles were detected 3 h post-exposure within the olfactory tract and olfactory bulb by a wide range of techniques, including visualisation via fluorescent and transmission electron microscopy. We conclude that, following short-term inhalation of solid QD nanoparticles, there is rapid olfactory uptake and axonal transport to the brain/olfactory bulb with observed activation of microglial cells, indicating a pro-inflammatory response. To our knowledge, this is the first study to clearly demonstrate that QDs can be rapidly transported from the nose to the brain by olfactory uptake via axonal transport following inhalation.


Biomedical Optics Express | 2012

Mechanisms of nanoparticle-mediated photomechanical cell damage

Sara Peeters; Michael Kitz; Stefan Preisser; Antoinette Wetterwald; Barbara Rothen-Rutishauser; George N. Thalmann; Christina Brandenberger; Arthur E. Bailey; Martin Frenz

Laser-assisted killing of gold nanoparticle targeted macrophages was investigated. Using pressure transient detection, flash photography and transmission electron microscopy (TEM) imaging, we studied the mechanism of single cell damage by vapor bubble formation around gold nanospheres induced by nanosecond laser pulses. The influence of the number of irradiating laser pulses and of particle size and concentration on the threshold for acute cell damage was determined. While the single pulse damage threshold is independent of the particle size, the threshold decreases with increasing particle size when using trains of pulses. The dependence of the cell damage threshold on the nanoparticle concentration during incubation reveals that particle accumulation and distribution inside the cell plays a key role in tissue imaging or cell damaging.

Collaboration


Dive into the Christina Brandenberger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack R. Harkema

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James G. Wagner

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

James J. Pestka

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge