Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina Gavegnano is active.

Publication


Featured researches published by Christina Gavegnano.


Journal of Biological Chemistry | 2010

Ribonucleoside Triphosphates as Substrate of Human Immunodeficiency Virus Type 1 Reverse Transcriptase in Human Macrophages

Edward M. Kennedy; Christina Gavegnano; Laura A. Nguyen; Rebecca Slater; Amanda Lucas; Emilie Fromentin; Raymond F. Schinazi; Baek Kim

We biochemically simulated HIV-1 DNA polymerization in physiological nucleotide pools found in two HIV-1 target cell types: terminally differentiated/non-dividing macrophages and activated/dividing CD4+ T cells. Quantitative tandem mass spectrometry shows that macrophages harbor 22–320-fold lower dNTP concentrations and a greater disparity between ribonucleoside triphosphate (rNTP) and dNTP concentrations than dividing target cells. A biochemical simulation of HIV-1 reverse transcription revealed that rNTPs are efficiently incorporated into DNA in the macrophage but not in the T cell environment. This implies that HIV-1 incorporates rNTPs during viral replication in macrophages and also predicts that rNTP chain terminators lacking a 3′-OH should inhibit HIV-1 reverse transcription in macrophages. Indeed, 3′-deoxyadenosine inhibits HIV-1 proviral DNA synthesis in human macrophages more efficiently than in CD4+ T cells. This study reveals that the biochemical landscape of HIV-1 replication in macrophages is unique and that ribonucleoside chain terminators may be a new class of anti-HIV-1 agents specifically targeting viral macrophage infection.


Journal of Viral Hepatitis | 2010

HCV drug discovery aimed at viral eradication

Raymond F. Schinazi; Leda Bassit; Christina Gavegnano

Summary.  Hepatitis C virus (HCV) causes significant morbidity and mortality worldwide with nearly 3% of the world population infected by this virus. Fortunately, this virus does not establish latency, and hence it may be possible to eradicate it. HCV is strongly associated with liver cirrhosis and hepatocellular carcinoma and is currently treated with pegylated interferon‐α (peg‐IFN‐α) and ribavirin. Unfortunately, these limited treatment options often produce significant side effects, and currently, complete eradication of virus with combined drug modalities has not yet been achieved for the majority of chronically HCV‐infected individuals. Restricted treatment options, lack of a universal cure for HCV and the link between chronic infection, liver cirrhosis and hepatocellular carcinoma necessitate design of novel drugs and treatment options. Understanding the relationship between the immune response, viral clearance and inhibition of viral replication with pharmacology‐based design can ultimately allow for complete eradication of HCV. This review focuses upon significant novel preclinical and clinical specifically targeted antiviral therapy (STAT‐C) drugs under development, highlights their mechanism of action, and discusses their impact on systemic viral loads and permanent clearance of infection.


Antiviral Chemistry & Chemotherapy | 2009

Antiretroviral therapy in macrophages: implication for HIV eradication

Christina Gavegnano; Raymond F. Schinazi

HIV type-1 (HIV-1) accounts for more than 25 million deaths and nearly 40 million people are infected worldwide. A significant obstacle in clearing virus from infected individuals is latently infected viral reservoirs. Latent HIV-1 can emerge with recrudescence as a productive infection later in disease progression and could provide a source for the emergence of resistant HIV-1. It is widely recognized that macrophages represent a latently infected viral reservoir and are a significant and critical HIV-1 target cell in vivo. Macrophages can be divided into multiple subsets of macrophage-like cells, all of which are susceptible to HIV-1 infection, including dendritic cells, Langerhans cells, alveolar macrophages, mucosal macrophages and microglial cells. Current antiretroviral therapy (ART) often displays differential antiviral activity in macrophages relative to CD4+ T-lymphocytes. Significant work has been performed to establish antiviral activity of many clinically approved ART in macrophages; however, a direct link between antiviral activity and specific mechanisms responsible for these antiviral effects are incompletely understood. This review identifies many understudied areas of research, along with topics for further research in the field of HIV therapy and eradication. Discussion focuses upon the known cellular pharmacology and antiviral activity of antiretroviral agents in macrophages and its relationship to latency, chronic HIV-1 infection and therapeutic strategies to eradicate systemic HIV-1 infection.


Antiviral Therapy | 2012

Antiretroviral monocyte efficacy score linked to cognitive impairment in HIV.

Cecilia Shikuma; Beau K. Nakamoto; Bruce Shiramizu; Chin-Yuan Liang; Victor DeGruttola; Kara Bennett; Robert H. Paul; Kalpana J. Kallianpur; Christina Gavegnano; Selwyn J. Hurwitz; Raymond F. Schinazi; Victor Valcour

BACKGROUND Monocytes transmigrating to the brain play a central role in HIV neuropathology. We hypothesized that the continued existence of neurocognitive impairment (NCI) despite potent antiretroviral (ARV) therapy is mediated by the inability of such therapy to control this monocyte/macrophage reservoir. METHODS Cross-sectional and longitudinal analyses were conducted within a prospectively enrolled cohort. We devised a monocyte efficacy (ME) score based on the anticipated effectiveness of ARV medications against monocytes/macrophages using published macrophage in vitro drug efficacy data. We examined, within an HIV neurocognitive database, its association with composite neuropsychological test scores (NPZ8) and clinical cognitive diagnoses among subjects on stable ARV medications unchanged for >6 months prior to assessment. RESULTS Among 139 subjects on ARV therapy, higher ME score correlated with better NPZ8 performance (r=0.23, P<0.01), whereas a score devised to quantify expected penetration effectiveness of ARVs into the brain (CPE score) did not (r=0.12, P=0.15). In an adjusted model (adjusted r(2)=0.12), ME score (β=0.003, P=0.02), CD4(+) T-cell nadir (β=0.001, P<0.01) and gender (β=-0.456, P=0.02) were associated with NPZ8, whereas CPE score was not (β=0.003, P=0.94). A higher ME score was associated with better clinical cognitive status (P<0.01). With a range of 12.5-433.0 units, a 100-unit increase in ME score resulted in a 10.6-fold decrease in the odds of a dementia diagnosis compared with normal cognition (P=0.01). CONCLUSIONS ARV efficacy against monocytes/macrophages correlates with cognitive function in HIV-infected individuals on ARV therapy within this cohort. If validated, efficacy against monocytes/macrophages may provide a new target to improve HIV NCI.


Antiviral Research | 2017

Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network

Matthew T. Aliota; Leda Bassit; Shelton S. Bradrick; Bryan D. Cox; Mariano A. Garcia-Blanco; Christina Gavegnano; Thomas C. Friedrich; Thaddeus G. Golos; Diane E. Griffin; Andrew D. Haddow; Esper G. Kallas; Uriel Kitron; Marc Lecuit; Diogo M. Magnani; Caroline Marrs; Natalia Mercer; Edward McSweegan; Lisa F. P. Ng; David H. O'Connor; Jorge E. Osorio; Guilherme S. Ribeiro; Michael J. Ricciardi; Shannan L. Rossi; George R. Saade; Raymond F. Schinazi; Geraldine Schott-Lerner; Chao Shan; Pei Yong Shi; David I. Watkins; Nikos Vasilakis

In response to the outbreak of Zika virus (ZIKV) infection in the Western Hemisphere and the recognition of a causal association with fetal malformations, the Global Virus Network (GVN) assembled an international taskforce of virologists to promote basic research, recommend public health measures and encourage the rapid development of vaccines, antiviral therapies and new diagnostic tests. In this article, taskforce members and other experts review what has been learned about ZIKV-induced disease in humans, its modes of transmission and the cause and nature of associated congenital manifestations. After describing the make-up of the taskforce, we summarize the emergence of ZIKV in the Americas, Africa and Asia, its spread by mosquitoes, and current control measures. We then review the spectrum of primary ZIKV-induced disease in adults and children, sites of persistent infection and sexual transmission, then examine what has been learned about maternal-fetal transmission and the congenital Zika syndrome, including knowledge obtained from studies in laboratory animals. Subsequent sections focus on vaccine development, antiviral therapeutics and new diagnostic tests. After reviewing current understanding of the mechanisms of emergence of Zika virus, we consider the likely future of the pandemic.


Molecular Biology International | 2012

The Impact of Macrophage Nucleotide Pools on HIV-1 Reverse Transcription, Viral Replication, and the Development of Novel Antiviral Agents

Christina Gavegnano; Edward M. Kennedy; Baek Kim; Raymond F. Schinazi

Macrophages are ubiquitous and represent a significant viral reservoir for HIV-1. Macrophages are nondividing, terminally differentiated cells, which have a unique cellular microenvironment relative to actively dividing T lymphocytes, all of which can impact HIV-1 infection/replication, design of inhibitors targeting viral replication in these cells, emergence of mutations within the HIV-1 genome, and disease progression. Scarce dNTPs drive rNTP incorporation into the proviral DNA in macrophages but not lymphocytes. Furthermore, the efficacy of a ribose-based inhibitor that potently inhibits HIV-1 replication in macrophages, has prompted a reconsideration of the previously accepted dogma that 2′-deoxy-based inhibitors demonstrate effective inhibition of HIV-1 replication. Additionally, higher levels of dUTP and rNTP incorporation in macrophages, and lack of repair mechanisms relative to lymphocytes, provide a further mechanistic understanding required to develop targeted inhibition of viral replication in macrophages. Together, the concentrations of dNTPs and rNTPs within macrophages comprise a distinctive cellular environment that directly impacts HIV-1 replication in macrophages and provides unique insight into novel therapeutic mechanisms that could be exploited to eliminate virus from these cells.


Journal of Biological Chemistry | 2011

Abundant Non-canonical dUTP Found in Primary Human Macrophages Drives Its Frequent Incorporation by HIV-1 Reverse Transcriptase

Edward M. Kennedy; Waaqo Daddacha; Rebecca Slater; Christina Gavegnano; Emilie Fromentin; Raymond F. Schinazi; Baek Kim

Terminally differentiated/non-dividing macrophages contain extremely low cellular dNTP concentrations (20–40 nm), compared with activated CD4+ T cells (2–5 μm). However, our LC-MS/MS study revealed that the non-canonical dUTP concentration (2.9 μm) is ∼60 times higher than TTP in macrophages, whereas the concentrations of dUTP and TTP in dividing human primary lymphocytes are very similar. Specifically, we evaluated the contribution of HIV-1 reverse transcriptase to proviral DNA uracilation under the physiological conditions found in HIV-1 target cells. Indeed, biochemical simulation of HIV-1 reverse transcription demonstrates that HIV-1 RT efficiently incorporates dUTP in the macrophage nucleotide pools but not in the T cell nucleotide pools. Measurement of both pre-steady state and steady state kinetic parameters of dUTP incorporation reveals minimal selectivity of HIV-1 RT for TTP over dUTP, implying that the cellular dUTP/TTP ratio determines the frequency of HIV-1 RT-mediated dUTP incorporation. The RT of another lentivirus, simian immunodeficiency virus, also displays efficient dUTP incorporation in the dNTP/dUTP pools found in macrophages but not in T cells. Finally, 2′,3′-dideoxyuridine was inhibitory to HIV-1 proviral DNA synthesis in macrophages but not in T cells. The data presented demonstrates that the non-canonical dUTP was abundant relative to TTP, and efficiently incorporated during HIV-1 reverse transcription, particularly in non-dividing macrophages.


Antimicrobial Agents and Chemotherapy | 2014

Ruxolitinib and Tofacitinib Are Potent and Selective Inhibitors of HIV-1 Replication and Virus Reactivation In Vitro

Christina Gavegnano; Mervi Detorio; Catherine Montero; Alberto Bosque; Vicente Planelles; Raymond F. Schinazi

ABSTRACT The JAK-STAT pathway is activated in both macrophages and lymphocytes upon human immunodeficiency virus type 1 (HIV-1) infection and thus represents an attractive cellular target to achieve HIV suppression and reduced inflammation, which may impact virus sanctuaries. Ruxolitinib and tofacitinib are JAK1/2 inhibitors that are FDA approved for rheumatoid arthritis and myelofibrosis, respectively, but their therapeutic application for treatment of HIV infection was unexplored. Both drugs demonstrated submicromolar inhibition of infection with HIV-1, HIV-2, and a simian-human immunodeficiency virus, RT-SHIV, across primary human or rhesus macaque lymphocytes and macrophages, with no apparent significant cytotoxicity at 2 to 3 logs above the median effective antiviral concentration. Combination of tofacitinib and ruxolitinib increased the efficacy by 53- to 161-fold versus that observed for monotherapy, respectively, and each drug applied alone to primary human lymphocytes displayed similar efficacy against HIV-1 containing various polymerase substitutions. Both drugs inhibited virus replication in lymphocytes stimulated with phytohemagglutinin (PHA) plus interleukin-2 (IL-2), but not PHA alone, and inhibited reactivation of latent HIV-1 at low-micromolar concentrations across the J-Lat T cell latency model and in primary human central memory lymphocytes. Thus, targeted inhibition of JAK provided a selective, potent, and novel mechanism to inhibit HIV-1 replication in lymphocytes and macrophages, replication of drug-resistant HIV-1, and reactivation of latent HIV-1 and has the potential to reset the immunologic milieu in HIV-infected individuals.


Antimicrobial Agents and Chemotherapy | 2013

Cellular Pharmacology and Potency of HIV-1 Nucleoside Analogs in Primary Human Macrophages

Christina Gavegnano; Mervi Detorio; Leda Bassit; Selwyn J. Hurwitz; Thomas W. North; Raymond F. Schinazi

ABSTRACT Understanding the cellular pharmacology of antiretroviral agents in macrophages and subsequent correlation with antiviral potency provides a sentinel foundation for definition of the dynamics between antiretroviral agents and viral reservoirs across multiple cell types, with the goal of eradication of HIV-1 from these cells. Various clinically relevant nucleoside antiviral agents, and the integrase inhibitor raltegravir, were selected for this study. The intracellular concentrations of the active metabolites of the nucleoside analogs were found to be 5- to 140-fold lower in macrophages than in lymphocytes, and their antiviral potency was significantly lower in macrophages constitutively activated with macrophage colony-stimulating factor (M-CSF) during acute infection than in resting macrophages (EC50, 0.4 to 9.42 μM versus 0.03 to 0.4 μM, respectively). Although tenofovir-treated cells displayed significantly lower intracellular drug levels than cells treated with its prodrug, tenofovir disoproxil fumarate, the levels of tenofovir-diphosphate for tenofovir-treated cells were similar in lymphocytes and macrophages. Raltegravir also displayed significantly lower intracellular concentrations in macrophages than in lymphocytes, independent of the activation state, but had similar potencies in resting and activated macrophages. These data underscore the importance of delivering adequate levels of drug to macrophages to reduce and eradicate HIV-1 infection.


PLOS Pathogens | 2017

Novel mechanisms to inhibit HIV reservoir seeding using Jak inhibitors

Christina Gavegnano; Jessica H. Brehm; Franck P. Dupuy; Aarthi Talla; Susan Pereira Ribeiro; Deanna A. Kulpa; Cheryl Cameron; Stephanie Santos; Selwyn J. Hurwitz; Vincent C. Marconi; Jean-Pierre Routy; Laurent Sabbagh; Raymond F. Schinazi; Rafick Pierre Sekaly

Despite advances in the treatment of HIV infection with ART, elucidating strategies to overcome HIV persistence, including blockade of viral reservoir establishment, maintenance, and expansion, remains a challenge. T cell homeostasis is a major driver of HIV persistence. Cytokines involved in regulating homeostasis of memory T cells, the major hub of the HIV reservoir, trigger the Jak-STAT pathway. We evaluated the ability of tofacitinib and ruxolitinib, two FDA-approved Jak inhibitors, to block seeding and maintenance of the HIV reservoir in vitro. We provide direct demonstration for involvement of the Jak-STAT pathway in HIV persistence in vivo, ex vivo, and in vitro; pSTAT5 strongly correlates with increased levels of integrated viral DNA in vivo, and in vitro Jak inhibitors reduce the frequency of CD4+ T cells harboring integrated HIV DNA. We show that Jak inhibitors block viral production from infected cells, inhibit γ-C receptor cytokine (IL-15)-induced viral reactivation from latent stores thereby preventing transmission of infectious particles to bystander activated T cells. These results show that dysregulation of the Jak-STAT pathway is associated with viral persistence in vivo, and that Jak inhibitors target key events downstream of γ-C cytokine (IL-2, IL-7 and IL-15) ligation to their receptors, impacting the magnitude of the HIV reservoir in all memory CD4 T cell subsets in vitro and ex vivo. Jak inhibitors represent a therapeutic modality to prevent key events of T cell activation that regulate HIV persistence and together, specific, potent blockade of these events may be integrated to future curative strategies.

Collaboration


Dive into the Christina Gavegnano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aarthi Talla

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge