Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina Kendziorski is active.

Publication


Featured researches published by Christina Kendziorski.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Loss of stearoyl–CoA desaturase-1 function protects mice against adiposity

James M. Ntambi; Makoto Miyazaki; Jonathan P. Stoehr; Hong Lan; Christina Kendziorski; Brian S. Yandell; Yang Song; Paul Cohen; Jeffrey M. Friedman; Alan D. Attie

Stearoyl–CoA desaturase (SCD) is a central lipogenic enzyme catalyzing the synthesis of monounsaturated fatty acids, mainly oleate (C18:1) and palmitoleate (C16:1), which are components of membrane phospholipids, triglycerides, wax esters, and cholesterol esters. Several SCD isoforms (SCD1-3) exist in the mouse. Here we show that mice with a targeted disruption of the SCD1 isoform have reduced body adiposity, increased insulin sensitivity, and are resistant to diet-induced weight gain. The protection from obesity involves increased energy expenditure and increased oxygen consumption. Compared with the wild-type mice the SCD1−/− mice have increased levels of plasma ketone bodies but reduced levels of plasma insulin and leptin. In the SCD1−/− mice, the expression of several genes of lipid oxidation are up-regulated, whereas lipid synthesis genes are down-regulated. These observations suggest that a consequence of SCD1 deficiency is an activation of lipid oxidation in addition to reduced triglyceride synthesis and storage.


Journal of Computational Biology | 2001

On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data.

Michael A. Newton; Christina Kendziorski; Craig Richmond; Frederick R. Blattner; Kam-Wah Tsui

We consider the problem of inferring fold changes in gene expression from cDNA microarray data. Standard procedures focus on the ratio of measured fluorescent intensities at each spot on the microarray, but to do so is to ignore the fact that the variation of such ratios is not constant. Estimates of gene expression changes are derived within a simple hierarchical model that accounts for measurement error and fluctuations in absolute gene expression levels. Significant gene expression changes are identified by deriving the posterior odds of change within a similar model. The methods are tested via simulation and are applied to a panel of Escherichia coli microarrays.


Bioinformatics | 2013

EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments

Ning Leng; John A. Dawson; James A. Thomson; Victor Ruotti; Anna I. Rissman; Bart M. G. Smits; Jill D. Haag; Michael N. Gould; Ron Stewart; Christina Kendziorski

MOTIVATION Messenger RNA expression is important in normal development and differentiation, as well as in manifestation of disease. RNA-seq experiments allow for the identification of differentially expressed (DE) genes and their corresponding isoforms on a genome-wide scale. However, statistical methods are required to ensure that accurate identifications are made. A number of methods exist for identifying DE genes, but far fewer are available for identifying DE isoforms. When isoform DE is of interest, investigators often apply gene-level (count-based) methods directly to estimates of isoform counts. Doing so is not recommended. In short, estimating isoform expression is relatively straightforward for some groups of isoforms, but more challenging for others. This results in estimation uncertainty that varies across isoform groups. Count-based methods were not designed to accommodate this varying uncertainty, and consequently, application of them for isoform inference results in reduced power for some classes of isoforms and increased false discoveries for others. RESULTS Taking advantage of the merits of empirical Bayesian methods, we have developed EBSeq for identifying DE isoforms in an RNA-seq experiment comparing two or more biological conditions. Results demonstrate substantially improved power and performance of EBSeq for identifying DE isoforms. EBSeq also proves to be a robust approach for identifying DE genes. AVAILABILITY AND IMPLEMENTATION An R package containing examples and sample datasets is available at http://www.biostat.wisc.edu/kendzior/EBSEQ/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Genome Research | 2008

A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility

Mark P. Keller; YounJeong Choi; Ping Wang; Dawn Belt Davis; Mary E. Rabaglia; Angie T. Oler; Donald S. Stapleton; Carmen A. Argmann; Kathryn L. Schueler; Seve Edwards; H Adam Steinberg; Elias Chaibub Neto; Robert Kleinhanz; Scott Turner; Marc K. Hellerstein; Eric E. Schadt; Brian S. Yandell; Christina Kendziorski; Alan D. Attie

Insulin resistance is necessary but not sufficient for the development of type 2 diabetes. Diabetes results when pancreatic beta-cells fail to compensate for insulin resistance by increasing insulin production through an expansion of beta-cell mass or increased insulin secretion. Communication between insulin target tissues and beta-cells may initiate this compensatory response. Correlated changes in gene expression between tissues can provide evidence for such intercellular communication. We profiled gene expression in six tissues of mice from an obesity-induced diabetes-resistant and a diabetes-susceptible strain before and after the onset of diabetes. We studied the correlation structure of mRNA abundance and identified 105 co-expression gene modules. We provide an interactive gene network model showing the correlation structure between the expression modules within and among the six tissues. This resource also provides a searchable database of gene expression profiles for all genes in six tissues in lean and obese diabetes-resistant and diabetes-susceptible mice, at 4 and 10 wk of age. A cell cycle regulatory module in islets predicts diabetes susceptibility. The module predicts islet replication; we found a strong correlation between (2)H(2)O incorporation into islet DNA in vivo and the expression pattern of the cell cycle module. This pattern is highly correlated with that of several individual genes in insulin target tissues, including Igf2, which has been shown to promote beta-cell proliferation, suggesting that these genes may provide a link between insulin resistance and beta-cell proliferation.


PLOS Genetics | 2008

Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling.

Christine T. Ferrara; Ping Wang; Elias Chaibub Neto; Robert D. Stevens; James R. Bain; Brett R. Wenner; Olga Ilkayeva; Mark P. Keller; Daniel A. Blasiole; Christina Kendziorski; Brian S. Yandell; Christopher B. Newgard; Alan D. Attie

Although numerous quantitative trait loci (QTL) influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s) and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptinob/ob and the diabetes-susceptible BTBR leptinob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines). We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes.


Nature | 2008

A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs

David L. Mellman; Michael L. Gonzales; Chunhua Song; Christy A. Barlow; Ping Wang; Christina Kendziorski; Richard A. Anderson

Phosphoinositides are a family of lipid signalling molecules that regulate many cellular functions in eukaryotes. Phosphatidylinositol-4,5-bisphosphate (PtdIns4,5P2), the central component in the phosphoinositide signalling circuitry, is generated primarily by type I phosphatidylinositol 4-phosphate 5-kinases (PIPKIα, PIPKIβ and PIPKIγ). In addition to functions in the cytosol, phosphoinositides are present in the nucleus, where they modulate several functions; however, the mechanism by which they directly regulate nuclear functions remains unknown. PIPKIs regulate cellular functions through interactions with protein partners, often PtdIns4,5P2 effectors, that target PIPKIs to discrete subcellular compartments, resulting in the spatial and temporal generation of PtdIns4,5P2 required for the regulation of specific signalling pathways. Therefore, to determine roles for nuclear PtdIns4,5P2 we set out to identify proteins that interacted with the nuclear PIPK, PIPKIα. Here we show that PIPKIα co-localizes at nuclear speckles and interacts with a newly identified non-canonical poly(A) polymerase, which we have termed Star-PAP (nuclear speckle targeted PIPKIα regulated-poly(A) polymerase) and that the activity of Star-PAP can be specifically regulated by PtdIns4,5P2. Star-PAP and PIPKIα function together in a complex to control the expression of select mRNAs, including the transcript encoding the key cytoprotective enzyme haem oxygenase-1 (refs 8, 9) and other oxidative stress response genes by regulating the 3′-end formation of their mRNAs. Taken together, the data demonstrate a model by which phosphoinositide signalling works in tandem with complement pathways to regulate the activity of Star-PAP and the subsequent biosynthesis of its target mRNA. The results reveal a mechanism for the integration of nuclear phosphoinositide signals and a method for regulating gene expression.


PLOS Genetics | 2010

Liver and Adipose Expression Associated SNPs are Enriched for Association to Type 2 Diabetes

Hua Zhong; John Beaulaurier; Pek Yee Lum; Cliona Molony; Xia Yang; Douglas J. MacNeil; Drew T. Weingarth; Bin Zhang; Danielle M. Greenawalt; Radu Dobrin; Ke Hao; Sangsoon Woo; Christine Fabre-Suver; Su Qian; Michael R. Tota; Mark P. Keller; Christina Kendziorski; Brian S. Yandell; Victor M. Castro; Alan D. Attie; Lee M. Kaplan; Eric E. Schadt

Genome-wide association studies (GWAS) have demonstrated the ability to identify the strongest causal common variants in complex human diseases. However, to date, the massive data generated from GWAS have not been maximally explored to identify true associations that fail to meet the stringent level of association required to achieve genome-wide significance. Genetics of gene expression (GGE) studies have shown promise towards identifying DNA variations associated with disease and providing a path to functionally characterize findings from GWAS. Here, we present the first empiric study to systematically characterize the set of single nucleotide polymorphisms associated with expression (eSNPs) in liver, subcutaneous fat, and omental fat tissues, demonstrating these eSNPs are significantly more enriched for SNPs that associate with type 2 diabetes (T2D) in three large-scale GWAS than a matched set of randomly selected SNPs. This enrichment for T2D association increases as we restrict to eSNPs that correspond to genes comprising gene networks constructed from adipose gene expression data isolated from a mouse population segregating a T2D phenotype. Finally, by restricting to eSNPs corresponding to genes comprising an adipose subnetwork strongly predicted as causal for T2D, we dramatically increased the enrichment for SNPs associated with T2D and were able to identify a functionally related set of diabetes susceptibility genes. We identified and validated malic enzyme 1 (Me1) as a key regulator of this T2D subnetwork in mouse and provided support for the association of this gene to T2D in humans. This integration of eSNPs and networks provides a novel approach to identify disease susceptibility networks rather than the single SNPs or genes traditionally identified through GWAS, thereby extracting additional value from the wealth of data currently being generated by GWAS.


BMC Genomics | 2007

Gene expression profiling of aging reveals activation of a p53-mediated transcriptional program

Michael G. Edwards; Rozalyn M. Anderson; Ming Yuan; Christina Kendziorski; Richard Weindruch; Tomas A. Prolla

BackgroundAging has been associated with widespread changes at the gene expression level in multiple mammalian tissues. We have used high density oligonucleotide arrays and novel statistical methods to identify specific transcriptional classes that may uncover biological processes that play a central role in mammalian aging.ResultsWe identified 712 transcripts that are differentially expressed in young (5 month old) and old (25-month old) mouse skeletal muscle. Caloric restriction (CR) completely or partially reversed 87% of the changes in expression. Examination of individual genes revealed a transcriptional profile indicative of increased p53 activity in the older muscle. To determine whether the increase in p53 activity is associated with transcriptional activation of apoptotic targets, we performed RT-PCR on four well known mediators of p53-induced apoptosis: puma, noxa, tnfrsf10b and bok. Expression levels for these proapoptotic genes increased significantly with age (P < 0.05), while CR significantly lowered expression levels for these genes as compared to control fed old mice (P < 0.05). Age-related induction of p53-related genes was observed in multiple tissues, but was not observed in young SOD2+/- and GPX4+/- mice, suggesting that oxidative stress does not induce the expression of these genes. Western blot analysis confirmed that protein levels for both p21 and GADD45a, two established transcriptional targets of p53, were higher in the older muscle tissue.ConclusionThese observations support a role for p53-mediated transcriptional program in mammalian aging and suggest that mechanisms other than reactive oxygen species are involved in the age-related transcriptional activation of p53 targets.


Genome Biology | 2016

Design and computational analysis of single-cell RNA-sequencing experiments

Rhonda Bacher; Christina Kendziorski

Single-cell RNA-sequencing (scRNA-seq) has emerged as a revolutionary tool that allows us to address scientific questions that eluded examination just a few years ago. With the advantages of scRNA-seq come computational challenges that are just beginning to be addressed. In this article, we highlight the computational methods available for the design and analysis of scRNA-seq experiments, their advantages and disadvantages in various settings, the open questions for which novel methods are needed, and expected future developments in this exciting area.


Mammalian Genome | 2009

Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice

Enpeng Zhao; Mark P. Keller; Mary E. Rabaglia; Angie T. Oler; Donnie S. Stapleton; Kathryn L. Schueler; Elias Chaibub Neto; Jee Young Moon; Ping Wang; I-Ming Wang; Pek Yee Lum; Irena Ivanovska; Michele A. Cleary; Danielle M. Greenawalt; John S. Tsang; Youn Jeong Choi; Robert Kleinhanz; Jin Shang; Yun-Ping Zhou; Andrew D. Howard; Bei B. Zhang; Christina Kendziorski; Nancy A. Thornberry; Brian S. Yandell; Eric E. Schadt; Alan D. Attie

Type 2 diabetes results from severe insulin resistance coupled with a failure of β cells to compensate by secreting sufficient insulin. Multiple genetic loci are involved in the development of diabetes, although the effect of each gene on diabetes susceptibility is thought to be small. MicroRNAs (miRNAs) are noncoding 19–22-nucleotide RNA molecules that potentially regulate the expression of thousands of genes. To understand the relationship between miRNA regulation and obesity-induced diabetes, we quantitatively profiled approximately 220 miRNAs in pancreatic islets, adipose tissue, and liver from diabetes-resistant (B6) and diabetes-susceptible (BTBR) mice. More than half of the miRNAs profiled were expressed in all three tissues, with many miRNAs in each tissue showing significant changes in response to genetic obesity. Furthermore, several miRNAs in each tissue were differentially responsive to obesity in B6 versus BTBR mice, suggesting that they may be involved in the pathogenesis of diabetes. In liver there were approximately 40 miRNAs that were downregulated in response to obesity in B6 but not BTBR mice, indicating that genetic differences between the mouse strains play a critical role in miRNA regulation. In order to elucidate the genetic architecture of hepatic miRNA expression, we measured the expression of miRNAs in genetically obese F2 mice. Approximately 10% of the miRNAs measured showed significant linkage (miR-eQTLs), identifying loci that control miRNA abundance. Understanding the influence that obesity and genetics exert on the regulation of miRNA expression will reveal the role miRNAs play in the context of obesity-induced type 2 diabetes.

Collaboration


Dive into the Christina Kendziorski's collaboration.

Top Co-Authors

Avatar

Alan D. Attie

Wisconsin Alumni Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Mark P. Keller

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Brian S. Yandell

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Ning Leng

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Kathryn L. Schueler

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Ping Wang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Michael A. Newton

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Aimee Teo Broman

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

John A. Dawson

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Mary E. Rabaglia

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge