Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina L. Addison is active.

Publication


Featured researches published by Christina L. Addison.


Journal of Leukocyte Biology | 2000

CXC chemokines in angiogenesis

John A. Belperio; Michael P. Keane; Douglas A. Arenberg; Christina L. Addison; Jan E. Ehlert; Marie D. Burdick; Robert M. Strieter

A variety of factors have been identified that regulate angiogenesis, including the CXC chemokine family. The CXC chemokines are a unique family of cytokines for their ability to behave in a disparate manner in the regulation of angiogenesis. CXC chemokines have four highly conserved cysteine amino acid residues, with the first two cysteine amino acid residues separated by one non‐conserved amino acid residue (i.e., CXC). A second structural domain within this family determines their angiogenic potential. The NH2 terminus of the majority of the CXC chemokines contains three amino acid residues (Glu‐Leu‐Arg: the ELR motif), which precedes the first cysteine amino acid residue of the primary structure of these cytokines. Members that contain the ELR motif (ELR+) are potent promoters of angiogenesis. In contrast, members that are inducible by interferons and lack the ELR motif (ELR−) are potent inhibitors of angiogenesis. This difference in angiogenic activity may impact on the pathogenesis of a variety of disorders.


Journal of Immunology | 2000

The CXC Chemokine Receptor 2, CXCR2, Is the Putative Receptor for ELR+ CXC Chemokine-Induced Angiogenic Activity

Christina L. Addison; Thomas O. Daniel; Marie D. Burdick; Hua Liu; Jan Erik Ehlert; Ying Ying Xue; Linda Buechi; Alfred Walz; Ann Richmond; Robert M. Strieter

We have previously shown that members of the ELR+ CXC chemokine family, including IL-8; growth-related oncogenes α, β, and γ; granulocyte chemotactic protein 2; and epithelial neutrophil-activating protein-78, can mediate angiogenesis in the absence of preceding inflammation. To date, the receptor on endothelial cells responsible for chemotaxis and neovascularization mediated by these ELR+ CXC chemokines has not been determined. Because all ELR+ CXC chemokines bind to CXC chemokine receptor 2 (CXCR2), we hypothesized that CXCR2 is the putative receptor for ELR+ CXC chemokine-mediated angiogenesis. To test this postulate, we first determined whether cultured human microvascular endothelial cells expressed CXCR2. CXCR2 was detected in human microvascular endothelial cells at the protein level by both Western blot analysis and immunohistochemistry using polyclonal Abs specific for human CXCR2. To determine whether CXCR2 played a functional role in angiogenesis, we determined whether this receptor was involved in endothelial cell chemotaxis. We found that microvascular endothelial cell chemotaxis in response to ELR+ CXC chemokines was inhibited by anti-CXCR2 Abs. In addition, endothelial cell chemotaxis in response to ELR+ CXC chemokines was sensitive to pertussis toxin, suggesting a role for G protein-linked receptor mechanisms in this biological response. The importance of CXCR2 in mediating ELR+ CXC chemokine-induced angiogenesis in vivo was also demonstrated by the lack of angiogenic activity induced by ELR+ CXC chemokines in the presence of neutralizing Abs to CXCR2 in the rat corneal micropocket assay, or in the corneas of CXCR2−/− mice. We thus conclude that CXCR2 is the receptor responsible for ELR+ CXC chemokine-mediated angiogenesis.


Laboratory Investigation | 2001

Engineering and characterization of functional human microvessels in immunodeficient mice

Jacques E. Nör; Martin C. Peters; Joan B. Christensen; Michelle M. Sutorik; Stephanie A. Linn; Mohamed K. Khan; Christina L. Addison; David J. Mooney; Peter J. Polverini

Current model systems used to investigate angiogenesis in vivo rely on the interpretation of results obtained with nonhuman endothelial cells. Recent advances in tissue engineering and molecular biology suggest the possibility of engineering human microvessels in vivo. Here we show that human dermal microvascular endothelial cells (HDMEC) transplanted into severe combined immunodeficient (SCID) mice on biodegradable polymer matrices differentiate into functional human microvessels that anastomose with the mouse vasculature. HDMEC were stably transduced with Flag epitope or alkaline phosphatase to confirm the human origin of the microvessels. Endothelial cells appeared dispersed throughout the sponge 1 day after transplantation, became organized into empty tubular structures by Day 5, and differentiated into functional microvessels within 7 to 10 days. Human microvessels in SCID mice expressed the physiological markers of angiogenesis: CD31, CD34, vascular cellular adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1). Human endothelial cells became invested by perivascular smooth muscle α-actin–expressing mouse cells 21 days after implantation. This model was used previously to demonstrate that overexpression of the antiapoptotic protein Bcl-2 in HDMEC enhances neovascularization, and that apoptotic disruption of tumor microvessels is associated with apoptosis of surrounding tumor cells. The proposed SCID mouse model of human angiogenesis is ideally suited for the study of the physiology of microvessel development, pathologic neovascular responses such as tumor angiogenesis, and for the development and investigation of strategies designed to enhance the neovascularization of engineered human tissues and organs.


Molecular and Cellular Biology | 2006

Perk-Dependent Translational Regulation Promotes Tumor Cell Adaptation and Angiogenesis in Response to Hypoxic Stress

Jaime D. Blais; Christina L. Addison; Robert Edge; Theresa Falls; Huijun Zhao; Kishore K. Wary; Costas Koumenis; Heather P. Harding; David Ron; Martin Holcik; John C. Bell

ABSTRACT It has been well established that the tumor microenvironment can promote tumor cell adaptation and survival. However, the mechanisms that influence malignant progression have not been clearly elucidated. We have previously demonstrated that cells cultured under hypoxic/anoxic conditions and transformed cells in hypoxic areas of tumors activate a translational control program known as the integrated stress response (ISR). Here, we show that tumors derived from K-Ras-transformed Perk−/− mouse embryonic fibroblasts (MEFs) are smaller and exhibit less angiogenesis than tumors with an intact ISR. Furthermore, Perk promotes a tumor microenvironment that favors the formation of functional microvessels. These observations were corroborated by a microarray analysis of polysome-bound RNA in aerobic and hypoxic Perk+/+ and Perk−/− MEFs. This analysis revealed that a subset of proangiogenic transcripts is preferentially translated in a Perk-dependent manner; these transcripts include VCIP, an adhesion molecule that promotes cellular adhesion, integrin binding, and capillary morphogenesis. Taken with the concomitant Perk-dependent translational induction of additional proangiogenic genes identified by our microarray analysis, this study suggests that Perk plays a role in tumor cell adaptation to hypoxic stress by regulating the translation of angiogenic factors necessary for the development of functional microvessels and further supports the contention that the Perk pathway could be an attractive target for novel antitumor modalities.


American Journal of Pathology | 1999

Distinct CXC chemokines mediate tumorigenicity of prostate cancer cells.

Bethany B. Moore; Douglas A. Arenberg; Kevin Stoy; Tamara Morgan; Christina L. Addison; Susan B. Morris; Mary C. Glass; Carol A. Wilke; Ying Ying Xue; Stephanie Sitterding; Steven L. Kunkel; Marie D. Burdick; Robert M. Strieter

Prostate cancer is the second leading cause of malignancy-related mortality in males in the United States. As a solid tumor, clinically significant tumor growth and metastasis are dependent on nutrients and oxygen supplied by tumor-associated neovasculature. As such, there is a selective tumorigenic advantage for those neoplasms that can produce angiogenic mediators. We show here that human prostate cancer cell lines can constitutively produce angiogenic CXC chemokines. Tumorigenesis of PC-3 prostate cancer cells was shown to be attributable, in part, to the production of the angiogenic CXC chemokine, interleukin (IL)-8. Neutralizing antisera to IL-8 inhibits PC-3 tumor growth in a human prostate cancer/SCID mouse model. Furthermore, angiogenic activity in PC-3 tumor homogenates was attributable to IL-8. In contrast, the Du145 prostate cancer cell line uses a different angiogenic CXC chemokine, GRO-alpha, to mediate tumorigenicity. Neutralizing antisera to GRO-alpha but not IL-8 reduced tumor growth in vivo and reduced the angiogenic activity in tumor homogenates. Thus, prostate cancer cell lines can use distinct CXC chemokines to mediate their tumorigenicity.


Human Gene Therapy | 2000

The CXC chemokine, monokine induced by interferon-gamma, inhibits non-small cell lung carcinoma tumor growth and metastasis.

Christina L. Addison; Douglas A. Arenberg; Susan B. Morris; Ying Ying Xue; Marie D. Burdick; Michael S. Mulligan; Mark D. Iannettoni; Robert M. Strieter

Angiogenesis is an absolute requirement for tumor growth beyond 2 mm3 in size. The balance in expression between opposing angiogenic and angiostatic factors controls the angiogenic process. The CXC chemokines are a group of chemotactic cytokines that possess disparate activity in the regulation of angiogenesis. Non-small cell lung carcinoma (NSCLC) has an imbalance in expression of ELR+ (angiogenic) compared with ELR- (angiostatic) CXC chemokines that favors angiogenesis and progressive tumor growth. We found that the level of the ELR- CXC chemokine MIG (monokine induced by interferon gamma) in human specimens of NSCLC was not significantly different from that found in normal lung tissue. These results suggested that the increased expression of ELR+ CXC chemokines found in these tumor samples is not counterregulated by a concomitant increase in the expression of the angiostatic ELR-CXC chemokine MIG. This would result in an even more profound imbalance in the expression of regulatory factors of angiogenesis that would favor neovascularization. We hypothesized that MIG might be an endogenous inhibitor of NSCLC tumor growth in vivo and that reconstituion of MIG in the tumor microenvironment would result in the inhibition of tumor growth and metastasis. In support of this hypothesis, we demonstrate here that overexpression of the ELR-CXC chemokine MIG, by three different strategies including gene transfer, results in the inhibition of NSCLC tumor growth and metastasis via a decrease in tumor-derived vessel density. These findings support the importance of the ELR- CXC chemokine MIG in inhibiting NSCLC tumor growth by attenuation of tumor-derived angiogenesis. Furthermore, these findings demonstrate the potential of gene therapy as an alternative means to deliver and overexpress a potent angiostatic CXC chemokine.


Cancer Research | 2013

Oncolytic Vaccinia Virus Disrupts Tumor-Associated Vasculature in Humans

Caroline J. Breitbach; Rozanne Arulanandam; Naomi De Silva; Steve H. Thorne; Richard H. Patt; Manijeh Daneshmand; Anne Moon; Carolina S. Ilkow; James R. Burke; Tae-Ho Hwang; Jeong Heo; Mong Cho; Hannah Chen; Fernando A. Angarita; Christina L. Addison; J. Andrea McCart; John C. Bell; David Kirn

Efforts to selectively target and disrupt established tumor vasculature have largely failed to date. We hypothesized that a vaccinia virus engineered to target cells with activation of the ras/MAPK signaling pathway (JX-594) could specifically infect and express transgenes (hGM-CSF, β-galactosidase) in tumor-associated vascular endothelial cells in humans. Efficient replication and transgene expression in normal human endothelial cells in vitro required either VEGF or FGF-2 stimulation. Intravenous infusion in mice resulted in virus replication in tumor-associated endothelial cells, disruption of tumor blood flow, and hypoxia within 48 hours; massive tumor necrosis ensued within 5 days. Normal vessels were not affected. In patients treated with intravenous JX-594 in a phase I clinical trial, we showed dose-dependent endothelial cell infection and transgene expression in tumor biopsies of diverse histologies. Finally, patients with advanced hepatocellular carcinoma, a hypervascular and VEGF-rich tumor type, were treated with JX-594 on phase II clinical trials. JX-594 treatment caused disruption of tumor perfusion as early as 5 days in both VEGF receptor inhibitor-naïve and -refractory patients. Toxicities to normal blood vessels or to wound healing were not evident clinically or on MRI scans. This platform technology opens up the possibility of multifunctional engineered vaccinia products that selectively target and infect tumor-associated endothelial cells, as well as cancer cells, resulting in transgene expression, vasculature disruption, and tumor destruction in humans systemically.


Cancer Research | 2015

Perivascular M2 Macrophages Stimulate Tumor Relapse after Chemotherapy

Russell Hughes; Bin-Zhi Qian; Charlotte Rowan; Munitta Muthana; Ioanna Keklikoglou; Oakley C. Olson; Simon Tazzyman; Sarah Danson; Christina L. Addison; Mark Clemons; Ana M. Gonzalez-Angulo; Johanna A. Joyce; Michele De Palma; Jeffrey W. Pollard; Claire E. Lewis

Tumor relapse after chemotherapy-induced regression is a major clinical problem, because it often involves inoperable metastatic disease. Tumor-associated macrophages (TAM) are known to limit the cytotoxic effects of chemotherapy in preclinical models of cancer. Here, we report that an alternatively activated (M2) subpopulation of TAMs (MRC1(+)TIE2(Hi)CXCR4(Hi)) accumulate around blood vessels in tumors after chemotherapy, where they promote tumor revascularization and relapse, in part, via VEGF-A release. A similar perivascular, M2-related TAM subset was present in human breast carcinomas and bone metastases after chemotherapy. Although a small proportion of M2 TAMs were also present in hypoxic tumor areas, when we genetically ablated their ability to respond to hypoxia via hypoxia-inducible factors 1 and 2, tumor relapse was unaffected. TAMs were the predominant cells expressing immunoreactive CXCR4 in chemotherapy-treated mouse tumors, with the highest levels expressed by MRC1(+) TAMs clustering around the tumor vasculature. Furthermore, the primary CXCR4 ligand, CXCL12, was upregulated in these perivascular sites after chemotherapy, where it was selectively chemotactic for MRC1(+) TAMs. Interestingly, HMOX-1, a marker of oxidative stress, was also upregulated in perivascular areas after chemotherapy. This enzyme generates carbon monoxide from the breakdown of heme, a gas known to upregulate CXCL12. Finally, pharmacologic blockade of CXCR4 selectively reduced M2-related TAMs after chemotherapy, especially those in direct contact with blood vessels, thereby reducing tumor revascularization and regrowth. Our studies rationalize a strategy to leverage chemotherapeutic efficacy by selectively targeting this perivascular, relapse-promoting M2-related TAM cell population.


BMC Cancer | 2004

Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis

Christina L. Addison; John A. Belperio; Marie D. Burdick; Robert M. Strieter

BackgroundThe Duffy antigen receptor for chemokines (DARC) is known to be a promiscuous chemokine receptor that binds a variety of CXC and CC chemokines in the absence of any detectable signal transduction events. Within the CXC group of chemokines, DARC binds the angiogenic CXC chemokines including IL-8 (CXCL8), GROα (CXCL1) and ENA-78 (CXCL5), all of which have previously been shown to be important in non-small cell lung carcinoma (NSCLC) tumor growth. We hypothesized that overexpression of DARC by a NSCLC tumor cell line would result in the binding of the angiogenic ELR+ CXC chemokines by the tumor cells themselves, and thus interfere with the stimulation of endothelial cells and induction of angiogenesis by the tumor cell-derived angiogenic chemokines.ResultsNSCLC tumor cells that constitutively expressed DARC were generated and their growth characteristics were compared to control transfected cells in vitro and in vivo in SCID animals. We found that tumors derived from DARC-expressing cells were significantly larger in size than tumors derived from control-transfected cells. However, upon histological examination we found that DARC-expressing tumors had significantly more necrosis and decreased tumor cellularity, as compared to control tumors. Expression of DARC by NSCLC cells was also associated with a decrease in tumor-associated vasculature and a reduction in metastatic potential.ConclusionsThe expression of DARC in the context of NSCLC tumors may act as a chemokine decoy receptor and interferes with normal tumor growth and chemokine-induced tumor neovascularization.


Molecular Oncology | 2011

Focal adhesion kinase inhibitors are potent anti-angiogenic agents

Miguel A. Cabrita; Laura M. Jones; Jennifer L. Quizi; Luc A. Sabourin; Bruce C. McKay; Christina L. Addison

Focal adhesion kinase (FAK), a cytoplasmic tyrosine kinase and scaffold protein localized to focal adhesions, is uniquely positioned at the convergence point of integrin and receptor tyrosine kinase signal transduction pathways. FAK is overexpressed in many tumor cells, hence various inhibitors targeting its activity have been tested for anti‐tumor activity. However, the direct effects of these pharmacologic agents on the endothelial cells of the vasculature have not been examined. Using primary human umbilical vein endothelial cells (HUVEC), we characterized the effects of two FAK inhibitors, PF‐573,228 and FAK Inhibitor 14 on essential processes for angiogenesis, such as migration, proliferation, viability and endothelial cell tube formation. We observed that treatment with either FAK Inhibitor 14 or PF‐573,228 resulted in reduced HUVEC viability, migration and tube formation in response to vascular endothelial growth factor (VEGF). Furthermore, we found that PF‐573,228 had the added ability to induce apoptosis of endothelial cells within 36 h post‐drug administration even in the continued presence of VEGF stimulation. FAK inhibitors also resulted in modification of the actin cytoskeleton within HUVEC, with observed increased stress fiber formation in the presence of drug. Given that endothelial cells were sensitive to FAK inhibitors at concentrations well below those reported to inhibit tumor cell migration, we confirmed their ability to inhibit endothelial‐derived FAK autophosphorylation and FAK‐mediated phosphorylation of recombinant paxillin at these doses. Taken together, our data indicate that small molecule inhibitors of FAK are potent anti‐angiogenic agents and suggest their utility in combinatorial therapeutic approaches targeting tumor angiogenesis.

Collaboration


Dive into the Christina L. Addison's collaboration.

Top Co-Authors

Avatar

Mark Clemons

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Huijun Zhao

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Angel Arnaout

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Grant A. Howe

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sasha Mazzarello

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Hutton

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge