Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina M. Ferrer is active.

Publication


Featured researches published by Christina M. Ferrer.


Journal of Biological Chemistry | 2012

Critical Role of O-Linked β-N-Acetylglucosamine Transferase in Prostate Cancer Invasion, Angiogenesis, and Metastasis

Thomas P. Lynch; Christina M. Ferrer; S. RaElle Jackson; Kristina S. Shahriari; Keith Vosseller; Mauricio J. Reginato

Background: Cancer cells display altered metabolism and expression of the nutrient sensor O-linked β-N-acetylglucosamine transferase (OGT). Results: Through regulation of FoxM1, OGT contributes to increased invasion, angiogenesis, and metastasis of prostate cancer cells. Conclusion: OGT plays a critical role in prostate cancer. Significance: OGT may provide a novel therapeutic target for treating prostate cancer. Cancer cells universally increase glucose and glutamine consumption, leading to the altered metabolic state known as the Warburg effect; one metabolic pathway, highly dependent on glucose and glutamine, is the hexosamine biosynthetic pathway. Increased flux through the hexosamine biosynthetic pathway leads to increases in the post-translational addition of O-linked β-N-acetylglucosamine (O-GlcNAc) to various nuclear and cytosolic proteins. A number of these target proteins are implicated in cancer, and recently, O-GlcNAcylation was shown to play a role in breast cancer; however, O-GlcNAcylation in other cancers remains poorly defined. Here, we show that O-GlcNAc transferase (OGT) is overexpressed in prostate cancer compared with normal prostate epithelium and that OGT protein and O-GlcNAc levels are elevated in prostate carcinoma cell lines. Reducing O-GlcNAcylation in PC3-ML cells was associated with reduced expression of matrix metalloproteinase (MMP)-2, MMP-9, and VEGF, resulting in inhibition of invasion and angiogenesis. OGT-mediated regulation of invasion and angiogenesis was dependent upon regulation of the oncogenic transcription factor FoxM1, a key regulator of invasion and angiogenesis, as reducing OGT expression led to increased FoxM1 protein degradation. Conversely, overexpression of a degradation-resistant FoxM1 mutant abrogated OGT RNAi-mediated effects on invasion, MMP levels, angiogenesis, and VEGF expression. Using a mouse model of metastasis, we found that reduction of OGT expression blocked bone metastasis. Altogether, these data suggest that as prostate cancer cells alter glucose and glutamine levels, O-GlcNAc modifications and OGT levels become elevated and are required for regulation of malignant properties, implicating OGT as a novel therapeutic target in the treatment of cancer.


Molecular Cell | 2014

O-GlcNAcylation Regulates Cancer Metabolism and Survival Stress Signaling via Regulation of the HIF-1 Pathway

Christina M. Ferrer; Thomas P. Lynch; Valerie L. Sodi; John N. Falcone; Luciana P. Schwab; Danielle L. Peacock; David J. Vocadlo; Tiffany N. Seagroves; Mauricio J. Reginato

The hexosamine biosynthetic pathway elevates posttranslational addition of O-linked β-N-acetylglucosamine (O-GlcNAc) on intracellular proteins. Cancer cells elevate total O-GlcNAcylation by increasing O-GlcNAc transferase (OGT) and/or decreasing O-GlcNAcase (OGA) levels. Reducing O-GlcNAcylation inhibits oncogenesis. Here, we demonstrate that O-GlcNAcylation regulates glycolysis in cancer cells via hypoxia-inducible factor 1 (HIF-1α) and its transcriptional target GLUT1. Reducing O-GlcNAcylation increases α-ketoglutarate, HIF-1 hydroxylation, and interaction with von Hippel-Lindau protein (pVHL), resulting in HIF-1α degradation. Reducing O-GlcNAcylation in cancer cells results in activation of endoplasmic reticulum (ER) stress and cancer cell apoptosis mediated through C/EBP homologous protein (CHOP). HIF-1α and GLUT1 are critical for OGT-mediated regulation of metabolic stress, as overexpression of stable HIF-1 or GLUT1 rescues metabolic defects. Human breast cancers with high levels of HIF-1α contain elevated OGT, and lower OGA levels correlate independently with poor patient outcome. Thus, O-GlcNAcylation regulates cancer cell metabolic reprograming and survival stress signaling via regulation of HIF-1α.


Journal of Molecular Biology | 2016

O-GlcNAcylation in Cancer Biology: Linking Metabolism and Signaling

Christina M. Ferrer; Valerie L. Sodi; Mauricio J. Reginato

The hexosamine biosynthetic pathway (HBP) is highly dependent on multiple metabolic nutrients including glucose, glutamine, and acetyl-CoA. Increased flux through HBP leads to elevated post-translational addition of β-D-N-acetylglucosamine sugars to nuclear and cytoplasmic proteins. Increased total O-GlcNAcylation is emerging as a general characteristic of cancer cells, and recent studies suggest that O-GlcNAcylation is a central communicator of nutritional status to control key signaling and metabolic pathways that regulate multiple cancer cell phenotypes. This review summarizes our current understanding of changes of O-GlcNAc cycling enzymes in cancer, the role of O-GlcNAcylation in tumorigenesis, and the current challenges in targeting this pathway therapeutically.


Oncogene | 2017

O-GlcNAcylation regulates breast cancer metastasis via SIRT1 modulation of FOXM1 pathway

Christina M. Ferrer; Tong Y. Lu; Zachary A. Bacigalupa; Christos D. Katsetos; David A. Sinclair; Mauricio J. Reginato

Tumors utilize aerobic glycolysis to support growth and invasion. However, the molecular mechanisms that link metabolism with invasion are not well understood. The nutrient sensor O-linked-β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) modifies intracellular proteins with N-acetylglucosamine. Cancers display elevated O-GlcNAcylation and suppression of O-GlcNAcylation inhibits cancer invasion and metastasis. Here, we show that the regulation of cancer invasion by OGT is dependent on the NAD+-dependent deacetylase SIRT1. Reducing O-GlcNAcylation elevates SIRT1 levels and activity in an AMPK (AMP-activated protein kinase α)-dependent manner. Reduced O-GlcNAcylation in cancer cells leads to SIRT1-mediated proteasomal degradation of oncogenic transcription factor FOXM1 in an MEK/ERK-dependent manner. SIRT1 is critical for OGT-mediated regulation of FOXM1 ubiquitination and reducing SIRT1 activity reverses OGT-mediated regulation of FOXM1. Moreover, we show that SIRT1 levels are required for OGT-mediated regulation of invasion and metastasis in breast cancer cells. Thus, O-GlcNAcylation is a central component linking metabolism to invasion and metastasis via an SIRT1/ERK/FOXM1 axis.


Cancer Discovery | 2014

Sticking to Sugars at the Metastatic Site: Sialyltransferase ST6GalNAc2 Acts as a Breast Cancer Metastasis Suppressor

Christina M. Ferrer; Mauricio J. Reginato

SUMMARY O-linked glycans on plasma membrane proteins are altered in cancer cells, leading to changes in cell adhesive properties and contributing to metastasis. Mechanisms of how these carbohydrates alter tumor spread remain vague. In this issue of Cancer Discovery, Murugaesu and colleagues, using an in vivo functional RNA interference metastasis screen, identified sialyltransferase ST6GalNAc2 as a novel metastasis suppressor gene. Aggressive estrogen receptor-negative breast cancers with reduced ST6GalNAc2 expression alter O-linked glycans on tumor cell surface, increasing soluble lectin galectin-3 binding and tumor cell clustering at metastatic sites.


Oncogene | 2018

Nutrient sensor O -GlcNAc transferase controls cancer lipid metabolism via SREBP-1 regulation

Valerie L. Sodi; Zachary A. Bacigalupa; Christina M. Ferrer; Joyce V. Lee; W A Gocal; D Mukhopadhyay; Kathryn E. Wellen; Mircea Ivan; Mauricio J. Reginato

Elevated O-GlcNAcylation is associated with disease states such as diabetes and cancer. O-GlcNAc transferase (OGT) is elevated in multiple cancers and inhibition of this enzyme genetically or pharmacologically inhibits oncogenesis. Here we show that O-GlcNAcylation modulates lipid metabolism in cancer cells. OGT regulates expression of the master lipid regulator the transcription factor sterol regulatory element binding protein 1 (SREBP-1) and its transcriptional targets both in cancer and lipogenic tissue. OGT regulates SREBP-1 protein expression via AMP-activated protein kinase (AMPK). SREBP-1 is critical for OGT-mediated regulation of cell survival and of lipid synthesis, as overexpression of SREBP-1 rescues lipogenic defects associated with OGT suppression, and tumor growth in vitro and in vivo. These results unravel a previously unidentified link between O-GlcNAcylation, lipid metabolism and the regulation of SREBP-1 in cancer and suggests a crucial role for O-GlcNAc signaling in transducing nutritional state to regulate lipid metabolism.


Methods of Molecular Biology | 2014

Cancer metabolism: cross talk between signaling and O-GlcNAcylation.

Christina M. Ferrer; Mauricio J. Reginato

Cancer cells exhibit a unique metabolic shift to aerobic glycolysis that has been exploited diagnostically and therapeutically in the clinic. Oncogenes and tumor suppressors alter signaling pathways that lead to alterations of glycolytic flux. Stemming from glycolysis, the hexosamine biosynthetic pathway leads to elevated posttranslational addition of O-linked-β-N-acetylglucosamine (O-GlcNAc) on a diverse population of nuclear and cytosolic proteins, many of which regulate signaling pathways. This unit outlines techniques used to detect metabolic alterations in cancer cells, regulation by signaling pathways, and cellular O-GlcNAcylation.


Genes & Development | 2018

An inactivating mutation in the histone deacetylase SIRT6 causes human perinatal lethality.

Christina M. Ferrer; Marielle Alders; Alex V. Postma; Seonmi Park; Mark A. Klein; Murat Cetinbas; Eva Pajkrt; Astrid Glas; Silvana van Koningsbruggen; Vincent M. Christoffels; Marcel Mannens; Lia Knegt; Jean-Pierre Etchegaray; Ruslan I. Sadreyev; John M. Denu; Gustavo Mostoslavsky; Merel C. van Maarle; Raul Mostoslavsky

It has been well established that histone and DNA modifications are critical to maintaining the equilibrium between pluripotency and differentiation during early embryogenesis. Mutations in key regulators of DNA methylation have shown that the balance between gene regulation and function is critical during neural development in early years of life. However, there have been no identified cases linking epigenetic regulators to aberrant human development and fetal demise. Here, we demonstrate that a homozygous inactivating mutation in the histone deacetylase SIRT6 results in severe congenital anomalies and perinatal lethality in four affected fetuses. In vitro, the amino acid change at Asp63 to a histidine results in virtually complete loss of H3K9 deacetylase and demyristoylase functions. Functionally, SIRT6 D63H mouse embryonic stem cells (mESCs) fail to repress pluripotent gene expression, direct targets of SIRT6, and exhibit an even more severe phenotype than Sirt6-deficient ESCs when differentiated into embryoid bodies (EBs). When terminally differentiated toward cardiomyocyte lineage, D63H mutant mESCs maintain expression of pluripotent genes and fail to form functional cardiomyocyte foci. Last, human induced pluripotent stem cells (iPSCs) derived from D63H homozygous fetuses fail to differentiate into EBs, functional cardiomyocytes, and neural progenitor cells due to a failure to repress pluripotent genes. Altogether, our study described a germline mutation in SIRT6 as a cause for fetal demise, defining SIRT6 as a key factor in human development and identifying the first mutation in a chromatin factor behind a human syndrome of perinatal lethality.


Molecular Cancer Therapeutics | 2018

Metabolite Profiling Reveals the Glutathione Biosynthetic Pathway as a Therapeutic Target in Triple-Negative Breast Cancer

Alexander Beatty; Lauren S. Fink; Tanu Singh; Alexander Strigun; Erik Peter; Christina M. Ferrer; Emmanuelle Nicolas; Kathy Q. Cai; Timothy P. Moran; Mauricio J. Reginato; Ulrike Rennefahrt; Jeffrey R. Peterson

Cancer cells can exhibit altered dependency on specific metabolic pathways and targeting these dependencies is a promising therapeutic strategy. Triple-negative breast cancer (TNBC) is an aggressive and genomically heterogeneous subset of breast cancer that is resistant to existing targeted therapies. To identify metabolic pathway dependencies in TNBC, we first conducted mass spectrometry–based metabolomics of TNBC and control cells. Relative levels of intracellular metabolites distinguished TNBC from nontransformed breast epithelia and revealed two metabolic subtypes within TNBC that correlate with markers of basal-like versus non-basal–like status. Among the distinguishing metabolites, levels of the cellular redox buffer glutathione were lower in TNBC cell lines compared to controls and markedly lower in non-basal–like TNBC. Significantly, these cell lines showed enhanced sensitivity to pharmacologic inhibition of glutathione biosynthesis that was rescued by N-acetylcysteine, demonstrating a dependence on glutathione production to suppress ROS and support tumor cell survival. Consistent with this, patients whose tumors express elevated levels of γ-glutamylcysteine ligase, the rate-limiting enzyme in glutathione biosynthesis, had significantly poorer survival. We find, further, that agents that limit the availability of glutathione precursors enhance both glutathione depletion and TNBC cell killing by γ-glutamylcysteine ligase inhibitors in vitro. Importantly, we demonstrate the ability to this approach to suppress glutathione levels and TNBC xenograft growth in vivo. Overall, these findings support the potential of targeting the glutathione biosynthetic pathway as a therapeutic strategy in TNBC and identify the non-basal-like subset as most likely to respond. Mol Cancer Ther; 17(1); 264–75. ©2017 AACR.


Molecular and Cellular Oncology | 2015

Sweet connections: O-GlcNAcylation links cancer cell metabolism and survival.

Christina M. Ferrer; Mauricio J. Reginato

Increased O-GlcNAcylation is emerging as a general characteristic of cancer cells that is critical for multiple oncogenic phenotypes. Recently, we demonstrated that elevated O-GlcNAcylation contributes to the metabolic shift seen in cancer through stabilization of the glycolytic regulator HIF-1α and links metabolism to stress and cancer cell survival.

Collaboration


Dive into the Christina M. Ferrer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joyce V. Lee

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kathryn E. Wellen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge