Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina M. McGraw is active.

Publication


Featured researches published by Christina M. McGraw.


PLOS ONE | 2011

Ocean acidification at high latitudes: potential effects on functioning of the Antarctic bivalve Laternula elliptica.

Vonda J. Cummings; Judi E. Hewitt; Anthony R van Rooyen; Kim I. Currie; Samuel Beard; Simon E Thrush; Joanna Norkko; Neill G. Barr; Philip L. Heath; N. Jane Halliday; Richard Sedcole; Antony Gomez; Christina M. McGraw; Victoria Metcalf

Ocean acidification is a well recognised threat to marine ecosystems. High latitude regions are predicted to be particularly affected due to cold waters and naturally low carbonate saturation levels. This is of concern for organisms utilising calcium carbonate (CaCO3) to generate shells or skeletons. Studies of potential effects of future levels of pCO2 on high latitude calcifiers are at present limited, and there is little understanding of their potential to acclimate to these changes. We describe a laboratory experiment to compare physiological and metabolic responses of a key benthic bivalve, Laternula elliptica, at pCO2 levels of their natural environment (430 µatm, pH 7.99; based on field measurements) with those predicted for 2100 (735 µatm, pH 7.78) and glacial levels (187 µatm, pH 8.32). Adult L. elliptica basal metabolism (oxygen consumption rates) and heat shock protein HSP70 gene expression levels increased in response both to lowering and elevation of pH. Expression of chitin synthase (CHS), a key enzyme involved in synthesis of bivalve shells, was significantly up-regulated in individuals at pH 7.78, indicating L. elliptica were working harder to calcify in seawater undersaturated in aragonite (ΩAr = 0.71), the CaCO3 polymorph of which their shells are comprised. The different response variables were influenced by pH in differing ways, highlighting the importance of assessing a variety of factors to determine the likely impact of pH change. In combination, the results indicate a negative effect of ocean acidification on whole-organism functioning of L. elliptica over relatively short terms (weeks-months) that may be energetically difficult to maintain over longer time periods. Importantly, however, the observed changes in L. elliptica CHS gene expression provides evidence for biological control over the shell formation process, which may enable some degree of adaptation or acclimation to future ocean acidification scenarios.


Journal of Phycology | 2012

CARBON-USE STRATEGIES IN MACROALGAE: DIFFERENTIAL RESPONSES TO LOWERED PH AND IMPLICATIONS FOR OCEAN ACIDIFICATION1

Christopher E. Cornwall; Christopher D. Hepburn; Daniel W. Pritchard; Kim I. Currie; Christina M. McGraw; Keith A. Hunter; Catriona L. Hurd

Ocean acidification (OA) is a reduction in oceanic pH due to increased absorption of anthropogenically produced CO2. This change alters the seawater concentrations of inorganic carbon species that are utilized by macroalgae for photosynthesis and calcification: CO2 and HCO3− increase; CO32− decreases. Two common methods of experimentally reducing seawater pH differentially alter other aspects of carbonate chemistry: the addition of CO2 gas mimics changes predicted due to OA, while the addition of HCl results in a comparatively lower [HCO3−]. We measured the short‐term photosynthetic responses of five macroalgal species with various carbon‐use strategies in one of three seawater pH treatments: pH 7.5 lowered by bubbling CO2 gas, pH 7.5 lowered by HCl, and ambient pH 7.9. There was no difference in photosynthetic rates between the CO2, HCl, or pH 7.9 treatments for any of the species examined. However, the ability of macroalgae to raise the pH of the surrounding seawater through carbon uptake was greatest in the pH 7.5 treatments. Modeling of pH change due to carbon assimilation indicated that macroalgal species that could utilize HCO3− increased their use of CO2 in the pH 7.5 treatments compared to pH 7.9 treatments. Species only capable of using CO2 did so exclusively in all treatments. Although CO2 is not likely to be limiting for photosynthesis for the macroalgal species examined, the diffusive uptake of CO2 is less energetically expensive than active HCO3− uptake, and so HCO3−‐using macroalgae may benefit in future seawater with elevated CO2.


Proceedings of the Royal Society of London B: Biological Sciences | 2013

Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification

Christopher E. Cornwall; Christopher D. Hepburn; Christina M. McGraw; Kim I. Currie; Conrad A. Pilditch; Keith A. Hunter; Philip W. Boyd; Catriona L. Hurd

Coastal ecosystems that are characterized by kelp forests encounter daily pH fluctuations, driven by photosynthesis and respiration, which are larger than pH changes owing to ocean acidification (OA) projected for surface ocean waters by 2100. We investigated whether mimicry of biologically mediated diurnal shifts in pH—based for the first time on pH time-series measurements within a kelp forest—would offset or amplify the negative effects of OA on calcifiers. In a 40-day laboratory experiment, the calcifying coralline macroalga, Arthrocardia corymbosa, was exposed to two mean pH treatments (8.05 or 7.65). For each mean, two experimental pH manipulations were applied. In one treatment, pH was held constant. In the second treatment, pH was manipulated around the mean (as a step-function), 0.4 pH units higher during daylight and 0.4 units lower during darkness to approximate diurnal fluctuations in a kelp forest. In all cases, growth rates were lower at a reduced mean pH, and fluctuations in pH acted additively to further reduce growth. Photosynthesis, recruitment and elemental composition did not change with pH, but δ13C increased at lower mean pH. Including environmental heterogeneity in experimental design will assist with a more accurate assessment of the responses of calcifiers to OA.


Talanta | 2007

Autonomous microfluidic system for phosphate detection.

Christina M. McGraw; Shannon Stitzel; John Cleary; Conor Slater; Dermot Diamond

Miniaturization of analytical devices through the advent of microfluidics and micro total analysis systems is an important step forward for applications such as medical diagnostics and environmental monitoring. The development of field-deployable instruments requires that the entire system, including all necessary peripheral components, be miniaturized and packaged in a portable device. A sensor for long-term monitoring of phosphate levels has been developed that incorporates sampling, reagent and waste storage, detection, and wireless communication into a complete, miniaturized system. The device employs a low-power detection and communication system, so the entire instrument can operate autonomously for 7 days on a single rechargeable, 12V battery. In addition, integration of a wireless communication device allows the instrument to be controlled and results to be downloaded remotely. This autonomous system has a limit of detection of 0.3mg/L and a linear dynamic range between 0 and 20mg/L.


PLOS ONE | 2014

Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa

Christopher E. Cornwall; Philip W. Boyd; Christina M. McGraw; Christopher D Hepburn; Conrad A. Pilditch; Jaz N. Morris; Abigail M. Smith; Catriona L. Hurd

Anthropogenically-modulated reductions in pH, termed ocean acidification, could pose a major threat to the physiological performance, stocks, and biodiversity of calcifiers and may devalue their ecosystem services. Recent debate has focussed on the need to develop approaches to arrest the potential negative impacts of ocean acidification on ecosystems dominated by calcareous organisms. In this study, we demonstrate the role of a discrete (i.e. diffusion) boundary layer (DBL), formed at the surface of some calcifying species under slow flows, in buffering them from the corrosive effects of low pH seawater. The coralline macroalga Arthrocardia corymbosa was grown in a multifactorial experiment with two mean pH levels (8.05 ‘ambient’ and 7.65 a worst case ‘ocean acidification’ scenario projected for 2100), each with two levels of seawater flow (fast and slow, i.e. DBL thin or thick). Coralline algae grown under slow flows with thick DBLs (i.e., unstirred with regular replenishment of seawater to their surface) maintained net growth and calcification at pH 7.65 whereas those in higher flows with thin DBLs had net dissolution. Growth under ambient seawater pH (8.05) was not significantly different in thin and thick DBL treatments. No other measured diagnostic (recruit sizes and numbers, photosynthetic metrics, %C, %N, %MgCO3) responded to the effects of reduced seawater pH. Thus, flow conditions that promote the formation of thick DBLs, may enhance the subsistence of calcifiers by creating localised hydrodynamic conditions where metabolic activity ameliorates the negative impacts of ocean acidification.


IEEE Sensors Journal | 2008

An Autonomous Microfluidic Sensor for Phosphate: On-Site Analysis of Treated Wastewater

John Cleary; Conor Slater; Christina M. McGraw; Dermot Diamond

A microfluidic sensor for long-term monitoring of phosphate levels has been developed that incorporates sampling, reagent and waste storage, detection, and wireless communication into a compact and portable device. The sensor is based on the yellow method for phosphate determination, a simple colorimetric technique involving the formation of vanadomolybdophosphoric acid when a phosphate-containing sample is mixed with an acidic reagent containing ammonium molybdate and ammonium meta-vanadate. This paper describes the application of the phosphate sensor to the on-site analysis of effluent from a wastewater treatment plant. The data was validated by comparison with the plants existing online monitor, and a good correlation between the two sets of data was achieved, showing that the phosphate sensor is capable of operating satisfactorily at low mg L-1 levels over extended periods of time.


PLOS ONE | 2015

Effect of Ocean Acidification and pH Fluctuations on the Growth and Development of Coralline Algal Recruits, and an Associated Benthic Algal Assemblage

Michael Y. Roleda; Christopher E. Cornwall; Yuanyuan Feng; Christina M. McGraw; Abigail M. Smith; Catriona L. Hurd

Coralline algae are susceptible to the changes in the seawater carbonate system associated with ocean acidification (OA). However, the coastal environments in which corallines grow are subject to large daily pH fluctuations which may affect their responses to OA. Here, we followed the growth and development of the juvenile coralline alga Arthrocardia corymbosa, which had recruited into experimental conditions during a prior experiment, using a novel OA laboratory culture system to simulate the pH fluctuations observed within a kelp forest. Microscopic life history stages are considered more susceptible to environmental stress than adult stages; we compared the responses of newly recruited A. corymbosa to static and fluctuating seawater pH with those of their field-collected parents. Recruits were cultivated for 16 weeks under static pH 8.05 and 7.65, representing ambient and 4× preindustrial pCO2 concentrations, respectively, and two fluctuating pH treatments of daily x~ = 8.05 (daytime pH = 8.45, night-time pH = 7.65) and daily x~ = 7.65 (daytime pH = 8.05, night-time pH = 7.25). Positive growth rates of new recruits were recorded in all treatments, and were highest under static pH 8.05 and lowest under fluctuating pH 7.65. This pattern was similar to the adults’ response, except that adults had zero growth under fluctuating pH 7.65. The % dry weight of MgCO3 in calcite of the juveniles was reduced from 10% at pH 8.05 to 8% at pH 7.65, but there was no effect of pH fluctuation. A wide range of fleshy macroalgae and at least 6 species of benthic diatoms recruited across all experimental treatments, from cryptic spores associated with the adult A. corymbosa. There was no effect of experimental treatment on the growth of the benthic diatoms. On the community level, pH-sensitive species may survive lower pH in the presence of diatoms and fleshy macroalgae, whose high metabolic activity may raise the pH of the local microhabitat.


Journal of The Serbian Chemical Society | 2013

Ion selective electrodes in environmental analysis

Aleksandar Radu; Tanja Radu; Christina M. McGraw; Peter W. Dillingham; Salzitsa Anastasova-Ivanova; Dermot Diamond

An overview is given dealing with the application of ion-selective electrodes (ISEs) in environmental analysis. ISEs are placed into the context of the trend of development of sensors for extensive and frequent monitoring. Discussed are the issues such as sensing platforms and their mass-production, improvement of precision, diagnostic of sensor functionality, and development of reference electrodes. Several examples of real-life application of ISEs in environmental analysis are given. The main emphasis of this article is directed towards summarizing recent results of the authors during the past several years.


Review of Scientific Instruments | 2003

The phosphorescence microphone: A device for testing oxygen sensors and films

Christina M. McGraw; Hari Shroff; Gamal Khalil; James B. Callis

A new concept in sound pressure detection, the phosphorescence microphone, is introduced. This device replaces the diaphragm of a microphone with a thin film of pressure sensitive paint. Dynamic changes in pressure are detected by monitoring the changes in phosphorescent intensity that are due to cyclical variations in oxygen partial pressure in the sound wave. To test this new device, the acoustic resonance spectrum of a closed cylinder is measured and compared to the spectrum obtained with a commercial electret microphone. Oscillations in phosphorescent intensity that occur at the frequency of sound are observed, and the magnitude of these oscillations is dependent on sound pressure. Several experiments are presented to confirm that the spectrum obtained with the phosphorescence microphone is due to the oxygen sensitivity of the pressure sensitive paint. In addition to detecting sound, this device has shown efficacy in testing pressure sensitive paints for high frequency, low differential pressure appli...


Advanced Environmental, Chemical, and Biological Sensing Technologies V | 2007

Autonomous field-deployable device for the measurement of phosphate in natural water

Conor Slater; John Cleary; Christina M. McGraw; William S. Yerazunis; King Tong Lau; Dermot Diamond

This work describes the ongoing development of an autonomous platform for the measurement of phosphate levels in river water. This device is designed to operate unassisted for one year, taking a measurement every hour and relaying the result to a laptop computer. A first generation prototype has already been developed and successfully field tested. The system contains the sampling, chemical storage, fluid handling, colorimetric data acquisition and waste storage capabilities necessary to perform the phosphate measurement. In addition to this, the device has the embedded control, GSM communications system and power supply to allow independent operation. The entire system is placed inside a compact and rugged enclosure. Further work discussed here builds on the successes of the prototype design to deliver a system capable of one full year of operation. The second generation system has been built from the ground up. Although identical in operation to the prototype its design has a greater emphasis on power efficient components and power management to allow for a longer lifetime. Other improvements include an automated two-point calibration to compensate for drift and a more rugged design to further increase the lifetime of the device.

Collaboration


Dive into the Christina M. McGraw's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher E. Cornwall

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge