Christina M. Pabelick
Mayo Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christina M. Pabelick.
Nano Letters | 2010
Rochelle R. Arvizo; Oscar R. Miranda; Michael A. Thompson; Christina M. Pabelick; Resham Bhattacharya; J. David Robertson; Vincent M. Rotello; Y. S. Prakash; Priyabrata Mukherjee
Herein, we demonstrate that the surface charge of gold nanoparticles (AuNPs) plays a critical role in modulating membrane potential of different malignant and nonmalignant cell types and subsequent downstream intracellular events. The findings presented here describe a novel mechanism for cell-nanoparticle interactions and AuNP uptake: modulation of membrane potential and its effect on intracellular events. These studies will help understand the biology of cell-nanoparticle interactions and facilitate the engineering of nanoparticles for specific intracellular targets.
Anesthesiology | 2005
Susan J. Kies; Christina M. Pabelick; Heather A. Hurley; Roger D. White; Michael J. Ackerman
Long QT syndrome is a malfunction of cardiac ion channels resulting in impaired ventricular repolarization that can lead to a characteristic polymorphic ventricular tachycardia known as torsades de pointes. Stressors, by increasing sympathetic tone, and drugs can provoke torsade de pointes, leading to syncope, seizures, or sudden cardiac death in these patients. Beta blockade, implantation of cardioverter defibrillators, and left cardiac sympathetic denervation are used in the treatment of these patients. However, these treatment modalities do not guarantee the prevention of sudden cardiac death. Certain drugs, including anesthetic agents, are known to contribute to QT prolongation. After reviewing the literature the authors give recommendations for the anesthetic management of these patients in the perioperative period.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2014
Bharathi Aravamudan; Alexander Kiel; Michelle Freeman; Philippe Delmotte; Michael A. Thompson; Robert Vassallo; Gary C. Sieck; Christina M. Pabelick; Y. S. Prakash
The balance between mitochondrial fission and fusion is crucial for mitochondria to perform its normal cellular functions. We hypothesized that cigarette smoke (CS) disrupts this balance and enhances mitochondrial dysfunction in the airway. In nonasthmatic human airway smooth muscle (ASM) cells, CS extract (CSE) induced mitochondrial fragmentation and damages their networked morphology in a concentration-dependent fashion, via increased expression of mitochondrial fission protein dynamin-related protein 1 (Drp1) and decreased fusion protein mitofusin (Mfn) 2. CSE effects on Drp1 vs. Mfn2 and mitochondrial network morphology involved reactive oxygen species (ROS), activation of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), protein kinase C (PKC) and proteasome pathways, as well as transcriptional regulation via factors such as NF-κB and nuclear erythroid 2-related factor 2. Inhibiting Drp1 prevented CSE effects on mitochondrial networks and ROS generation, whereas blocking Mfn2 had the opposite, detrimental effect. In ASM from asmatic patients, mitochondria exhibited substantial morphological defects at baseline and showed increased Drp1 but decreased Mfn2 expression, with exacerbating effects of CSE. Overall, these results highlight the importance of mitochondrial networks and their regulation in the context of cellular changes induced by insults such as inflammation (as in asthma) or CS. Altered mitochondrial fission/fusion proteins have a further potential to influence parameters such as ROS and cell proliferation and apoptosis relevant to airway diseases.
Journal of Immunology | 2010
Dan F. Smelter; Venkatachalem Sathish; Michael A. Thompson; Christina M. Pabelick; Robert Vassallo; Y. S. Prakash
Thymic stromal lymphopoietin (TSLP) is a newly identified IL-7–like cytokine known to be expressed in airway biopsies of patients with asthma and chronic obstructive pulmonary disease. As both diseases may be induced or exacerbated by cigarette smoking, it is possible that TSLP represents an important link between cigarette smoke exposure and inflammatory signaling in the airways. In this regard, TSLP appears to also be expressed in airway smooth muscle (ASM); however, its role is unknown. In the current study, we examined TSLP and the TSLP receptor (TSLP-R) expression and function in human ASM cells under normal conditions and following exposure to cigarette smoke extract (CSE). Western blot analysis of human ASM cells showed significant expression of TSLP and TSLP-R, with increased expression of both by overnight exposure to 1 or 2% CSE. Furthermore, CSE increased TSLP release by ASM. In parallel experiments using enzymatically dissociated human ASM cells loaded with the Ca2+ indicator fura 2-AM and imaged using fluorescence microscopy, we evaluated the effects of CSE exposure on intracellular Ca2+ ([Ca2+]i) responses to agonist stimulation. [Ca2+]i responses to histamine were increased with overnight CSE exposure. Exposure to TSLP also resulted in elevated responses, which were blunted by TSLP and TSLP-R Abs. Importantly, the enhancing effects of CSE on [Ca2+]i responses were also blunted by these Abs. These effects were associated with CSE- and TSLP-induced changes in STAT5 phosphorylation. Overall, these novel data suggest that cigarette smoke, TSLP, and ASM are functionally linked and that cigarette smoke-induced increase in airway contractility may be mediated via ASM-derived increases in TSLP signaling.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2009
Venkatachalem Sathish; Michael A. Thompson; Jeffrey P. Bailey; Christina M. Pabelick; Y. S. Prakash; Gary C. Sieck
Airway inflammation leads to increased intracellular Ca(2+) ([Ca(2+)](i)) levels in airway smooth muscle (ASM) cells. Sarcoplasmic reticulum Ca(2+) release and reuptake are key components of ASM [Ca(2+)](i) regulation. Ca(2+) reuptake occurs via sarcoendoplasmic reticulum Ca(2+) ATPase (SERCA) and is regulated by the inhibitory protein phospholamban (PLB) in many cell types. In human ASM, we tested the hypothesis that inflammation increases PLB, thus inhibiting SERCA function, and leading to maintained [Ca(2+)](i) levels. Surprisingly, we found that human ASM does not express PLB protein (although mRNA is detectable). Overnight exposure to the proinflammatory cytokines TNFalpha and IL-13 did not induce PLB expression, raising the issue of how SERCA is regulated. We then found that direct SERCA phosphorylation (via CaMKII) occurs in human ASM. In fura-2-loaded human ASM cells, we found that the CaMKII antagonist KN-93 significantly slowed the rate of fall of [Ca(2+)](i) transients induced by ACh or bradykinin (in zero extracellular Ca(2+)), suggesting a role for CaMKII-mediated SERCA regulation. SERCA expression was decreased by cytokine exposure, and the rate of fall of [Ca(2+)](i) transients was slowed in cells exposed to TNFalpha and IL-13. Cytokine effects on Ca(2+) reuptake were unaffected by additional exposure to KN-93. These data indicate that in human ASM, SERCA is regulated by mechanisms such as CaMKII and that airway inflammation maintains [Ca(2+)](i) levels by decreasing SERCA expression and slowing Ca(2+) reuptake.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2010
Elizabeth A. Townsend; Michael A. Thompson; Christina M. Pabelick; Y. S. Prakash
The severity of asthma, a disease characterized by airway hyperresponsiveness and inflammation, is enhanced in some women during the menstrual cycle and during pregnancy but relieved in others. These clinical findings suggest that sex steroids modulate airway tone. Based on well-known relaxant effects of estrogens on vascular smooth muscle, we hypothesized that estrogens relax airway smooth muscle (ASM), thus facilitating bronchodilation. In ASM tissues from female patients, Western and immunocytochemical analyses confirmed the presence of both estrogen receptor (ER) isoforms, ERalpha and ERbeta. In fura 2-loaded, dissociated ASM cells maintained in culture, acute exposure to physiological concentrations of 17beta-estradiol (E(2); 100 pM to 10 nM) decreased the intracellular Ca(2+) ([Ca(2+)](i)) response to 1 muM histamine, an effect reversed by the ER antagonist ICI-182,780. The ERalpha-selective agonist (R,R)-THC had a greater reducing effect on [Ca(2+)](i) responses to histamine and 1 muM ACh compared with the ERbeta-selective agonist (DPN). The effects of E(2) on [Ca(2+)](i) were mediated, at least in part, via decreased Ca(2+) influx through l-type channels and store-operated Ca(2+) entry but not via Ca(2+)-activated K(+) channels, receptor-operated entry, or sarcoplasmic reticulum reuptake. Overall, these data support our hypothesis that estrogens relax ASM and suggest a potentially novel therapeutic target in airway hyperresponsiveness.
Expert Review of Respiratory Medicine | 2010
Y. S. Prakash; Michael A. Thompson; Lucas W. Meuchel; Christina M. Pabelick; Carlos B. Mantilla; Syed I. A. Zaidi; Richard J. Martin
Neurotrophins (NTs) are a family of growth factors that are well-known in the nervous system. There is increasing recognition that NTs (nerve growth factor, brain-derived neurotrophic factor and NT3) and their receptors (high-affinity TrkA, TrkB and TrkC, and low-affinity p75NTR) are expressed in lung components including the nasal and bronchial epithelium, smooth muscle, nerves and immune cells. NT signaling may be important in normal lung development, developmental lung disease, allergy and inflammation (e.g., rhinitis, asthma), lung fibrosis and even lung cancer. In this review, we describe the current status of our understanding of NT signaling in the lung, with hopes of using aspects of the NT signaling pathway in the diagnosis and therapy of lung diseases.
Science Translational Medicine | 2015
Polina Yarova; Alecia Stewart; Venkatachalem Sathish; Rodney D. Britt; Michael A. Thompson; Alexander P. P. Lowe; Michelle Freeman; Bharathi Aravamudan; Hirohito Kita; Sarah C. Brennan; Martin Schepelmann; Thomas E. Davies; Sun Yung; Zakky Cholisoh; Emma Jane Kidd; William Richard Ford; Kenneth John Broadley; Katja Rietdorf; Wenhan Chang; Mohd Ezuan Bin Khayat; Donald T. Ward; Christopher Corrigan; Jeremy P. T. Ward; Paul J. Kemp; Christina M. Pabelick; Y. S. Prakash; Daniela Riccardi
Calcilytics reduce airway hyperresponsiveness and inflammation and may represent effective asthma therapeutics. Calcilytics may help asthmatics breathe easier Calcium may help to build strong bones. However, Yarova et al. now show that extracellular calcium may contribute to inflammation and airway hyperresponsiveness in allergic asthma. They show that elevated extracellular calcium can activate airway smooth muscle cells through the calcium-sensing receptor (CaSR). Asthmatic patients express higher levels of CaSR in their airways than do healthy individuals, as does a mouse model of allergic asthma. Indeed, extracellular calcium and other asthma-associated activators of CaSR increased airway hyperreactivity. What’s more, calcilytics—CaSR antagonists—can prevent these effects both in vitro and in vivo, supporting clinical testing of these drugs for asthmatics. Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells. These effects can be prevented by CaSR antagonists, termed calcilytics. Moreover, asthmatic patients and allergen-sensitized mice expressed more CaSR in ASMs than did their healthy counterparts. Indeed, polycations induced hyperreactivity in mouse bronchi, and this effect was prevented by calcilytics and absent in mice with CaSR ablation from ASM. Calcilytics also reduced airway hyperresponsiveness and inflammation in allergen-sensitized mice in vivo. These data show that a functional CaSR is up-regulated in asthmatic ASM and targeted by locally produced polycations to induce hyperresponsiveness and inflammation. Thus, calcilytics may represent effective asthma therapeutics.
American Journal of Physiology-cell Physiology | 1998
William J. Perkins; Christina M. Pabelick; David O. Warner; Keith A. Jones
This study tested the hypothesis that the NO donor S-nitrosoglutathione (GSNO) relaxes canine tracheal smooth muscle (CTSM) in part by a cGMP-independent process that involves reversible oxidation of intracellular thiols. GSNO caused a concentration-dependent relaxation in ACh-contracted strips (EC50 ∼1.2 μM) accompanied by a concentration-dependent increase in cytosolic cGMP concentration ([cGMP]i). The soluble guanylate cyclase inhibitor methylene blue prevented the increase in [cGMP]iinduced by 1 and 10 μM GSNO, but isometric force decreased by 10 ± 4 and 55 ± 3%, respectively. After recovery of [cGMP]i to baseline, GSNO-induced relaxation persisted during continuous ACh stimulation. Dithiothreitol caused a rapid recovery of isometric force to values similar to those obtained with ACh alone in these strips. We conclude that GSNO relaxes CTSM contracted by ACh in part by oxidation of intracellular protein thiols.
Journal of Cellular and Molecular Medicine | 2012
Bharathi Aravamudan; Michael A. Thompson; Christina M. Pabelick; Y. S. Prakash
Airway diseases such as asthma involve increased airway smooth muscle (ASM) contractility and remodelling via enhanced proliferation. Neurotrophins (NTs) such as brain‐derived neurotrophic factor (BDNF), well‐known in the nervous system, can regulate Ca2+ signalling, and interact with cytokines in contributing to airway hyperreactivity. In this study, we determined whether and how BDNF regulates human ASM cell proliferation in the presence of inflammation, thus testing its potential role in airway remodelling. Cells were treated with 10 nM BDNF, 25 ng/ml tumour necrosis factor (TNF‐α) or interleukin‐13 (IL‐13), or 10 ng/ml platelet‐derived growth factor (PDGF). Proliferation was measured using CyQuant dye, with immunoblotting of cell cycle proteins predicted to change with proliferation. Forty‐eight hours of BDNF enhanced ASM proliferation to ∼50% of that by PDGF or cytokines. Transfection with small interfering RNAs (siRNAs) targeting high‐affinity tropomyosin‐related kinase B receptor abolished BDNF effects on proliferation, whereas low‐affinity 75 kD neurotrophin receptor (p75NTR) siRNA had no effect. Systematic pharmacologic inhibition of different components of ERK1/2 and PI3K/Akt1 pathways blunted BDNF or TNF‐α–induced proliferation. BDNF also induced IκB phosphorylation and nuclear translocation of p50 and p65 NF‐κB subunits, with electron mobility shift assay confirmation of NF‐κB binding to consensus DNA sequence. These results demonstrate that NTs such as BDNF can enhance human ASM cell proliferation by activating proliferation‐specific signalling pathways and a versatile transcription factor such as NF‐κB, which are common to cytokines and growth factors involved in asthma.