Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina M. Van Itallie is active.

Publication


Featured researches published by Christina M. Van Itallie.


Journal of Clinical Investigation | 2001

Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability

Christina M. Van Itallie; Christoph Rahner; James M. Anderson

Tight junctions regulate paracellular conductance and ionic selectivity. These properties vary among epithelia but the molecular basis of this variation remains unknown. To test whether members of the claudin family of tight junction proteins influence paracellular ionic selectivity, we expressed human claudin-4 in cultured MDCK cells using an inducible promoter. Overexpression increased the complexity of tight junction strands visible by freeze-fracture microscopy without affecting the levels of claudin-1, -2, or -3, occludin, or ZO-1. A decrease in conductance correlated directly with the kinetics of claudin-4 induction. Dilution potentials revealed that the decrease in paracellular conductance resulted from a selective decrease in Na(+) permeability without a significant effect on Cl(-) permeability. Flux for an uncharged solute, mannitol, and the rank order of permeabilities for the alkali metal cations were unchanged. A paracellular site for these effects was supported by the lack of apical/basal directionality of the dilution potentials, the linearity of current-voltage relationships, and the lack of influence of inhibitors of major transcellular transporters. These results provide, to our knowledge, the first direct demonstration of the ability of a claudin to influence paracellular ion selectivity and support a role for the claudins in creating selective channels through the tight-junction barrier.


Cold Spring Harbor Perspectives in Biology | 2009

Physiology and Function of the Tight Junction

James M. Anderson; Christina M. Van Itallie

Understanding of tight junctions has evolved from their historical perception as inert solute barriers to recognition of their physiological and biochemical complexity. Many proteins are specifically localized to tight junctions, including cytoplasmic actin-binding proteins and adhesive transmembrane proteins. Among the latter are claudins, which are critical barrier proteins. Current information suggests that the paracellular barrier is most usefully modeled as having two physiologic components: a system of charge-selective small pores, 4 A in radius, and a second pathway created by larger discontinuities in the barrier, lacking charge or size discrimination. The first pathway is influenced by claudin expression patterns and the second is likely controlled by different proteins and signals. Recent information on claudin function and disease-causing mutations have led to a more complete understanding of their role in barrier formation, but progress is impeded by lack of high resolution structural information.


Molecular Biology of the Cell | 2009

ZO-1 Stabilizes the Tight Junction Solute Barrier through Coupling to the Perijunctional Cytoskeleton

Christina M. Van Itallie; Alan S. Fanning; Arlene S. Bridges; James M. Anderson

ZO-1 binds numerous transmembrane and cytoplasmic proteins and is required for assembly of both adherens and tight junctions, but its role in defining barrier properties of an established tight junction is unknown. We depleted ZO-1 in MDCK cells using siRNA methods and observed specific defects in the barrier for large solutes, even though flux through the small claudin pores was unaffected. This permeability increase was accompanied by morphological alterations and reorganization of apical actin and myosin. The permeability defect, and to a lesser extent morphological changes, could be rescued by reexpression of either full-length ZO-1 or an N-terminal construct containing the PDZ, SH3, and GUK domains. ZO-2 knockdown did not replicate either the permeability or morphological phenotypes seen in the ZO-1 knockdown, suggesting that ZO-1 and -2 are not functionally redundant for these functions. Wild-type and knockdown MDCK cells had differing physiological and morphological responses to pharmacologic interventions targeting myosin activity. Use of the ROCK inhibitor Y27632 or myosin inhibitor blebbistatin increased TER in wild-type cells, whereas ZO-1 knockdown monolayers were either unaffected or changed in the opposite direction; paracellular flux and myosin localization were also differentially affected. These studies are the first direct evidence that ZO-1 limits solute permeability in established tight junctions, perhaps by forming a stabilizing link between the barrier and perijunctional actomyosin.


Seminars in Cell & Developmental Biology | 2014

Architecture of tight junctions and principles of molecular composition

Christina M. Van Itallie; James M. Anderson

The tight junction creates an intercellular barrier limiting paracellular movement of solutes and material across epithelia. Currently many proteins have been identified as components of the tight junction and understanding their architectural organization and interactions is critical to understanding the biology of the barrier. In general the architecture can be conceptualized into compartments with the transmembrane barrier proteins (claudins, occludin, JAM-A, etc.), linked to peripheral scaffolding proteins (such as ZO-1, afadin, MAGI1, etc.) which are in turned linked to actin and microtubules through numerous linkers (cingulin, myosins, protein 4.1, etc.). Within this complex network are associated many signaling proteins that affect the barrier and broader cell functions. The PDZ domain is a commonly used motif to specifically link individual junction protein pairs. Here we review some of the key proteins defining the tight junction and general themes of their organization with the perspective that much will be learned about function by characterizing the detailed architecture and subcompartments within the junction.


Molecular Biology of the Cell | 2012

Zonula occludens-1 and -2 regulate apical cell structure and the zonula adherens cytoskeleton in polarized epithelia

Alan S. Fanning; Christina M. Van Itallie; James M. Anderson

ETOC: Our study reveals that ZO proteins in fully polarized cells regulate the assembly and contractility of the perijunctional actomyosin ring associated with the adherens junction.


Journal of Cell Science | 2005

Palmitoylation of claudins is required for efficient tight-junction localization

Christina M. Van Itallie; Todd M. Gambling; John L. Carson; James M. Anderson

Palmitoylation of integral membrane proteins can affect intracellular trafficking, protein-protein interactions and protein stability. The goal of the present study was to determine whether claudins, transmembrane-barrier-forming proteins of the tight junction, are palmitoylated and whether this modification has functional implications for the tight-junction barrier. Claudin-14, like other members of the claudin family, contains membrane-proximal cysteines following both the second and the fourth transmembrane domains, which we speculated could be modified by S-acylation with palmitic acid. We observed that [3H]-palmitic acid was incorporated into claudin-14 expressed by transfection in both cultured epithelial cells and fibroblasts. Mutation of cysteines to serines following either the second or the fourth transmembrane segments decreased the incorporation of [3H]-palmitic acid, and mutation of all four cysteines eliminated palmitoylation. We previously reported that expression of claudin-14 in epithelial monolayers results in a fivefold increase in electrical resistance. By contrast, expression of the mutant claudin-14 resulted in smaller increases in resistance. The mutants localized less well to tight junctions and were also found in lysosomes, suggesting an alteration in trafficking or stability. However, we observed no change in protein half-life and only a small shift in fractionation out of caveolin-enriched detergent-resistant membranes. Although less well localized to the tight junction, palmitoylation-deficient claudin-14 was still concentrated at sites of cell-cell contact and was competent to assemble into freeze-fracture strands when expressed in fibroblasts. These results demonstrate that palmitoylation of claudin-14 is required for efficient localization into tight junctions but not stability or strand assembly. Decreased ability of the mutants to alter resistance is probably the result of their less efficient localization into the barrier.


Journal of Cell Science | 2010

Occludin is required for cytokine-induced regulation of tight junction barriers.

Christina M. Van Itallie; Alan S. Fanning; Jennifer Holmes; James M. Anderson

The function of occludin remains elusive. Proposed roles include maintenance of tight junction barriers, signaling and junction remodeling. To investigate a potential role in mediating cytokine-induced changes in barrier properties, we measured barrier responses to interferon-γ plus TNFα in control, occludin-overexpressing and occludin knockdown MDCK II monolayers. MDCK cells show a complex response to cytokines characterized by a simultaneous increase in the transepithelial electrical resistance and a decrease in the barrier for large solutes. We observed that overexpression of occludin increased and occludin knockdown decreased sensitivity to cytokines as assessed by both these parameters. It is known that caveolin-1 interacts with occludin and is implicated in several models of cytokine-dependent barrier disruption; we found that occludin knockdown altered the subcellular distribution of caveolin-1 and that partitioning of caveolin into detergent-insoluble lipid rafts was influenced by changing occludin levels. Knockdown of caveolin decreased the cytokine-induced flux increase, whereas the increase in the electrical barrier was unaltered; the effect of double knockdown of occludin and caveolin was similar to that of occludin single knockdown, consistent with the possibility that they function in the same pathway. These results demonstrate that occludin is required for cells to transduce cytokine-mediated signals that either increase the electrical barrier or decrease the large solute barrier, possibly by coordinating the functions of caveolin-1.


Journal of Biological Chemistry | 2008

Structure of the Claudin-binding Domain of Clostridium perfringens Enterotoxin

Christina M. Van Itallie; Laurie Betts; James G. Smedley; Bruce A. McClane; James M. Anderson

Clostridium perfringens enterotoxin is a common cause of food-borne and antibiotic-associated diarrhea. The toxins receptors on intestinal epithelial cells include claudin-3 and -4, members of a large family of tight junction proteins. Toxin-induced cytolytic pore formation requires residues in the NH2-terminal half, whereas residues near the COOH terminus are required for binding to claudins. The claudin-binding COOH-terminal domain is not toxic and is currently under investigation as a potential drug absorption enhancer. Because claudin-4 is overexpressed on some human cancers, the toxin is also being investigated for targeting chemotherapy. Our aim was to solve the structure of the claudin-binding domain to advance its therapeutic applications. The structure of a 14-kDa fragment containing residues 194 to the native COOH terminus at position 319 was solved by x-ray diffraction to a resolution of 1.75Å. The structure is a nine-strand β sandwich with previously unappreciated similarity to the receptor-binding domains of several other toxins of spore-forming bacteria, including the collagen-binding domain of ColG from Clostridium histolyticum and the large Cry family of toxins (including Cry4Ba) of Bacillus thuringiensis. Correlations with previous studies suggest that the claudin-4 binding site is on a large surface loop between strands β8 and β9 or includes these strands. The sequence that was crystallized (residues 194-319) binds to purified human claudin-4 with a 1:1 stoichiometry and affinity in the submicromolar range similar to that observed for binding of native toxin to cells. Our results provide a structural framework to advance therapeutic applications of the toxin and suggest a common ancestor for several receptor-binding domains of bacterial toxins.


Tissue barriers | 2013

Claudin interactions in and out of the tight junction

Christina M. Van Itallie; James M. Anderson

Claudins form the paracellular tight junction seal in epithelial tissues. Although there is still limited information on how these proteins are organized at the junction, a number of recent studies have provided useful insights both into claudin-claudin interactions and into interactions between claudins and other proteins. The focus of this review is to summarize recent information about claudin interactions and to identify critical unanswered questions about claudin organization and tight junction structure which will be required to understand claudin function.


Journal of Biological Chemistry | 2011

Claudin-2 Forms Homodimers and Is a Component of a High Molecular Weight Protein Complex

Christina M. Van Itallie; Laura L. Mitic; James M. Anderson

Tight junctions are multiprotein complexes that form the fundamental physiologic and anatomic barrier between epithelial and endothelial cells, yet little information is available about their molecular organization. To begin to understand how the transmembrane proteins of the tight junction are organized into multiprotein complexes, we used blue native-PAGE (BN-PAGE) and cross-linking techniques to identify complexes extracted from MDCK II cells and mouse liver. In nonionic detergent extracts from MDCK II cells, the tight junction integral membrane protein claudin-2 was preferentially isolated as a homodimer, whereas claudin-4 was monomeric. Analysis of the interactions between chimeras of claudin-2 and -4 are consistent with the transmembrane domains of claudin-2 being responsible for dimerization, and mutational analysis followed by cross-linking indicated that the second transmembrane domains were arranged in close proximity in homodimers. BN-PAGE of mouse liver membrane identified a relatively discrete high molecular weight complex containing at least claudin-1, claudin-2, and occludin; the difference in the protein complex sizes between cultured cells and tissues may reflect differences in tight junction protein or lipid composition or post-translational modifications. Our results suggest that BN-PAGE may be a useful tool in understanding tight junction structure.

Collaboration


Dive into the Christina M. Van Itallie's collaboration.

Top Co-Authors

Avatar

James M. Anderson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Amber Jean Tietgens

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alan S. Fanning

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Angel Aponte

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jennifer Holmes

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Marjan Gucek

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Laura L. Mitic

University of California

View shared research outputs
Top Co-Authors

Avatar

Arlene S. Bridges

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Bechara Kachar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Evan S. Krystofiak

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge