Christina Morse
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christina Morse.
Nature Medicine | 2012
Nandini Krishnamoorthy; Anupriya Khare; Timothy B. Oriss; Mahesh Raundhal; Christina Morse; Manohar Yarlagadda; Sally E. Wenzel; Martin L. Moore; R. Stokes Peebles; Anuradha Ray; Prabir Ray
Immune tolerance is instituted early in life, during which time regulatory T (Treg) cells have an important role. Recurrent infections with respiratory syncytial virus (RSV) in early life increase the risk for asthma in adult life. Repeated infection of infant mice tolerized to ovalbumin (OVA) through their mothers milk with RSV induced allergic airway disease in response to OVA sensitization and challenge, including airway inflammation, hyper-reactivity and higher OVA-specific IgE, as compared to uninfected tolerized control mice. Virus infection induced GATA-3 expression and T helper type 2 (TH2) cytokine production in forkhead box P3 (FOXP3)+ Treg cells and compromised the suppressive function of pulmonary Treg cells in a manner that was dependent on interleukin-4 receptor α (IL-4Rα) expression in the host. Thus, by promoting a TH2-type inflammatory response in the lung, RSV induced a TH2-like effector phenotype in Treg cells and attenuated tolerance to an unrelated antigen (allergen). Our findings highlight a mechanism by which viral infection targets a host-protective mechanism in early life and increases susceptibility to allergic disease.
Journal of Clinical Investigation | 2015
Mahesh Raundhal; Christina Morse; Anupriya Khare; Timothy B. Oriss; Jadranka Milosevic; John B. Trudeau; Rachael Huff; Joseph M. Pilewski; Fernando Holguin; Jay K. Kolls; Sally E. Wenzel; Prabir Ray; Anuradha Ray
Severe asthma (SA) is a challenge to control, as patients are not responsive to high doses of systemic corticosteroids (CS). In contrast, mild-moderate asthma (MMA) is responsive to low doses of inhaled CS, indicating that Th2 cells, which are dominant in MMA, do not solely orchestrate SA development. Here, we analyzed broncholalveolar lavage cells isolated from MMA and SA patients and determined that IFN-γ (Th1) immune responses are exacerbated in the airways of individuals with SA, with reduced Th2 and IL-17 responses. We developed a protocol that recapitulates the complex immune response of human SA, including the poor response to CS, in a murine model. Compared with WT animals, Ifng-/- mice subjected to this SA model failed to mount airway hyperresponsiveness (AHR) without appreciable effect on airway inflammation. Conversely, AHR was not reduced in Il17ra-/- mice, although airway inflammation was lower. Computer-assisted pathway analysis tools linked IFN-γ to secretory leukocyte protease inhibitor (SLPI), which is expressed by airway epithelial cells, and IFN-γ inversely correlated with SLPI expression in SA patients and the mouse model. In mice subjected to our SA model, forced SLPI expression decreased AHR in the absence of CS, and it was further reduced when SLPI was combined with CS. Our study identifies a distinct immune response in SA characterized by a dysregulated IFN-γ/SLPI axis that affects lung function.
Nature Communications | 2017
Krishnendu Chakraborty; Mahesh Raundhal; Bill B. Chen; Christina Morse; Yulia Y. Tyurina; Anupriya Khare; Timothy B. Oriss; Rachael Huff; Janet S. Lee; Claudette M. St. Croix; Simon Watkins; Rama K. Mallampalli; Valerian E. Kagan; Anuradha Ray; Prabir Ray
Bacterial pneumonia is a significant healthcare burden worldwide. Failure to resolve inflammation after infection precipitates lung injury and an increase in morbidity and mortality. Gram-negative bacteria are common in pneumonia and increased levels of the mito-damage-associated molecular pattern (DAMP) cardiolipin can be detected in the lungs. Here we show that mice infected with Klebsiella pneumoniae develop lung injury with accumulation of cardiolipin. Cardiolipin inhibits resolution of inflammation by suppressing production of anti-inflammatory IL-10 by lung CD11b+Ly6GintLy6CloF4/80+ cells. Cardiolipin induces PPARγ SUMOylation, which causes recruitment of a repressive NCOR/HDAC3 complex to the IL-10 promoter, but not the TNF promoter, thereby tipping the balance towards inflammation rather than resolution. Inhibition of HDAC activity by sodium butyrate enhances recruitment of acetylated histone 3 to the IL-10 promoter and increases the concentration of IL-10 in the lungs. These findings identify a mechanism of persistent inflammation during pneumonia and indicate the potential of HDAC inhibition as a therapy.
Journal of Immunology | 2014
Timothy B. Oriss; Nandini Krishnamoorthy; Mahesh Raundhal; Christina Morse; Krishnendu Chakraborty; Anupriya Khare; Rachael Huff; Prabir Ray; Anuradha Ray
We reported previously that c-kit ligation by membrane-bound stem cell factor (mSCF) boosts IL-6 production in dendritic cells (DCs) and a Th17-immune response. However, Th17 establishment also requires heterodimeric IL-23, but the mechanisms that regulate IL-23 gene expression in DCs are not fully understood. We show that IL-23p19 gene expression in lung DCs is dependent on mSCF, which is regulated by the metalloproteinase MMP-9. Th1-inducing conditions enhanced MMP-9 activity, causing cleavage of mSCF, whereas the opposite was true for Th17-promoting conditions. In MMP-9−/− mice, a Th1-inducing condition could maintain mSCF and enhance IL-23p19 in DCs, promoting IL-17–producing CD4+ T cells in the lung. Conversely, mSCF cleavage from bone marrow DCs in vitro by rMMP-9 led to reduced IL-23p19 expression under Th17-inducing conditions, with dampening of intracellular AKT phosphorylation. Collectively, these results show that the c-kit/mSCF/MMP-9 axis regulates IL-23 gene expression in DCs to control IL-17 production in the lung.
Journal of Investigative Dermatology | 2017
Tracy Tabib; Christina Morse; Ting Wang; Wei Chen; Robert Lafyatis
Fibroblasts produce matrix, regulate inflammation, mediate reparative processes, and serve as pluripotent mesenchymal cells. Analyzing digested normal human skin by single-cell RNA sequencing, we explored different fibroblast populations. T-distributed stochastic neighbor embedding and clustering of single-cell RNA sequencing data from six biopsy samples showed two major fibroblast populations, defined by distinct genes, including SFRP2 and FMO1, expressed exclusively by these two major fibroblast populations. Further subpopulations were defined within each of the SFRP2 and FMO1 populations and five minor fibroblast populations, each expressing discrete genes: CRABP1, COL11A1, FMO2, PRG4, or C2ORF40. Immunofluorescent staining confirmed that SFRP2 and FMO1 define cell types of dramatically different morphology. SFRP2+ fibroblasts were small, elongated, and distributed between collagen bundles. FMO1+ fibroblasts were larger and distributed in both interstitial and perivascular locations. Differential gene expression by SFRP2+, FMO1+, and COL11A1+ fibroblasts suggests roles in matrix deposition, inflammatory cell retention, and connective tissue cell differentiation, respectively.
JCI insight | 2017
Timothy B. Oriss; Mahesh Raundhal; Christina Morse; Rachael Huff; Sudipta Das; Rachel Hannum; Marc Gauthier; Kathryn L. Scholl; Krishnendu Chakraborty; Seyed M. Nouraie; Sally E. Wenzel; Prabir Ray; Anuradha Ray
Severe asthma (SA) is a significant problem both clinically and economically, given its poor response to corticosteroids (CS). We recently reported a complex type 1-dominated (IFN-γ-dominated) immune response in more than 50% of severe asthmatics despite high-dose CS treatment. Also, IFN-γ was found to be critical for increased airway hyperreactivity (AHR) in our model of SA. The transcription factor IRF5 expressed in M1 macrophages can induce a Th1/Th17 response in cocultured human T cells. Here we show markedly higher expression of IRF5 in bronchoalveolar lavage (BAL) cells of severe asthmatics as compared with that in cells from milder asthmatics or healthy controls. Using our SA mouse model, we demonstrate that lack of IRF5 in lymph node migratory DCs severely limits their ability to stimulate the generation of IFN-γ- and IL-17-producing CD4+ T cells and IRF5-/- mice subjected to the SA model displayed significantly lower IFN-γ and IL-17 responses, albeit showing a reciprocal increase in Th2 response. However, the absence of IRF5 rendered the mice responsive to CS with suppression of the heightened Th2 response. These data support the notion that IRF5 inhibition in combination with CS may be a viable approach to manage disease in a subset of severe asthmatics.
Frontiers in Immunology | 2018
Sokratis A. Apostolidis; Giuseppina Stifano; Tracy Tabib; Lisa M. Rice; Christina Morse; Bashar Kahaleh; Robert Lafyatis
Objective: The mechanisms that lead to endothelial cell (EC) injury and propagate the vasculopathy in Systemic Sclerosis (SSc) are not well understood. Using single cell RNA sequencing (scRNA-seq), our goal was to identify EC markers and signature pathways associated with vascular injury in SSc skin. Methods: We implemented single cell sorting and subsequent RNA sequencing of cells isolated from SSc and healthy control skin. We used t-distributed stochastic neighbor embedding (t-SNE) to identify the various cell types. We performed pathway analysis using Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA). Finally, we independently verified distinct markers using immunohistochemistry on skin biopsies and qPCR in primary ECs from SSc and healthy skin. Results: By combining the t-SNE analysis with the expression of known EC markers, we positively identified ECs among the sorted cells. Subsequently, we examined the differential expression profile between the ECs from healthy and SSc skin. Using GSEA and IPA analysis, we demonstrated that the SSc endothelial cell expression profile is enriched in processes associated with extracellular matrix generation, negative regulation of angiogenesis and epithelial-to-mesenchymal transition. Two of the top differentially expressed genes, HSPG2 and APLNR, were independently verified using immunohistochemistry staining and real-time qPCR analysis. Conclusion: ScRNA-seq, differential gene expression and pathway analysis revealed that ECs from SSc patients show a discrete pattern of gene expression associated with vascular injury and activation, extracellular matrix generation and negative regulation of angiogenesis. HSPG2 and APLNR were identified as two of the top markers of EC injury in SSc.
Journal of Immunology | 2016
Timothy B. Oriss; Christina Morse; Mahesh Raundhal; Rachael Huff; Rachel Hannum; Prabir Ray; Anuradha Ray
Journal of Immunology | 2014
Anupriya Khare; Krishnendu Chakraborty; Mahesh Raundhal; Christina Morse; Prabir Ray; Anuradha Ray
Journal of Immunology | 2014
Mahesh Raundhal; Christina Morse; Timothy B. Oriss; Anupriya Khare; Nandini Krishnamoorthy; Jay K. Kolls; Sally E. Wenzel; Anuradha Ray; Prabir Ray