Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina Neigaard Hansen is active.

Publication


Featured researches published by Christina Neigaard Hansen.


The Journal of Physiology | 2012

Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects

Steen Larsen; Joachim Nielsen; Christina Neigaard Hansen; Lars Bo Nielsen; Nis Stride; Henrik Daa Schrøder; Robert Boushel; Jørn Wulff Helge; Flemming Dela; Martin Hey-Mogensen

•  Several biochemical measures of mitochondrial components are used as biomarkers of mitochondrial content and muscle oxidative capacity. However, no studies have validated these surrogates against a morphological measure of mitochondrial content in human subjects. •  The most commonly used markers (citrate synthase activity, cardiolipin content, mitochondrial DNA content (mtDNA), complex I–V protein, and complex I–IV activity) were correlated with a measure of mitochondrial content (transmission electron microscopy) and muscle oxidative capacity (respiration in permeabilized fibres). •  Cardiolipin content followed by citrate synthase activity and complex I activity were the biomarkers showing the strongest association with mitochondrial content. •  mtDNA was found to be a poor biomarker of mitochondrial content. •  Complex IV activity was closely associated with mitochondrial oxidative phosphorylation capacity.


Journal of the American College of Cardiology | 2013

Simvastatin Effects on Skeletal Muscle: Relation to Decreased Mitochondrial Function and Glucose Intolerance

Steen Larsen; Nis Stride; Martin Hey-Mogensen; Christina Neigaard Hansen; Lia E. Bang; Henning Bundgaard; Lars B. Nielsen; Jørn Wulff Helge; Flemming Dela

OBJECTIVES Glucose tolerance and skeletal muscle coenzyme Q(10) (Q(10)) content, mitochondrial density, and mitochondrial oxidative phosphorylation (OXPHOS) capacity were measured in simvastatin-treated patients (n = 10) and in well-matched control subjects (n = 9). BACKGROUND A prevalent side effect of statin therapy is muscle pain, and yet the basic mechanism behind it remains unknown. We hypothesize that a statin-induced reduction in muscle Q(10) may attenuate mitochondrial OXPHOS capacity, which may be an underlying mechanism. METHODS Plasma glucose and insulin concentrations were measured during an oral glucose tolerance test. Mitochondrial OXPHOS capacity was measured in permeabilized muscle fibers by high-resolution respirometry in a cross-sectional design. Mitochondrial content (estimated by citrate synthase [CS] activity, cardiolipin content, and voltage-dependent anion channel [VDAC] content) as well as Q(10) content was determined. RESULTS Simvastatin-treated patients had an impaired glucose tolerance and displayed a decreased insulin sensitivity index. Regarding mitochondrial studies, Q(10) content was reduced (p = 0.05), whereas mitochondrial content was similar between the groups. OXPHOS capacity was comparable between groups when complex I- and complex II-linked substrates were used alone, but when complex I + II-linked substrates were used (eliciting convergent electron input into the Q intersection [maximal ex vivo OXPHOS capacity]), a decreased (p < 0.01) capacity was observed in the patients compared with the control subjects. CONCLUSIONS These simvastatin-treated patients were glucose intolerant. A decreased Q(10) content was accompanied by a decreased maximal OXPHOS capacity in the simvastatin-treated patients. It is plausible that this finding partly explains the muscle pain and exercise intolerance that many patients experience with their statin treatment.


The Journal of Physiology | 2010

Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity.

Regitze Kraunsøe; Robert Boushel; Christina Neigaard Hansen; Peter Schjerling; Klaus Qvortrup; Mikael Støckel; K. J. Mikines; Flemming Dela

Adipose tissue exerts important endocrine and metabolic functions in health and disease. Yet the bioenergetics of this tissue is not characterized in humans and possible regional differences are not elucidated. Using high resolution respirometry, mitochondrial respiration was quantified in human abdominal subcutaneous and intra‐abdominal visceral (omentum majus) adipose tissue from biopsies obtained in 20 obese patients undergoing bariatric surgery. Mitochondrial DNA (mtDNA) and genomic DNA (gDNA) were determined by the PCR technique for estimation of mitochondrial density. Adipose tissue samples were permeabilized and respirometric measurements were performed in duplicate at 37°C. Substrates (glutamate (G) + malate (M) + octanoyl carnitine (O) + succinate (S)) were added sequentially to provide electrons to complex I + II. ADP (D) for state 3 respiration was added after GM. Uncoupled respiration was measured after addition of FCCP. Visceral fat contained more mitochondria per milligram of tissue than subcutaneous fat, but the cells were smaller. Robust, stable oxygen fluxes were found in both tissues, and coupled state 3 (GMOSD) and uncoupled respiration were significantly (P < 0.05) higher in visceral (0.95 ± 0.05 and 1.15 ± 0.06 pmol O2 s−1 mg−1, respectively) compared with subcutaneous (0.76 ± 0.04 and 0.98 ± 0.05 pmol O2 s−1 mg−1, respectively) adipose tissue. Expressed per mtDNA, visceral adipose tissue had significantly (P < 0.05) lower mitochondrial respiration. Substrate control ratios were higher and uncoupling control ratio lower (P < 0.05) in visceral compared with subcutaneous adipose tissue. We conclude that visceral fat is bioenergetically more active and more sensitive to mitochondrial substrate supply than subcutaneous fat. Oxidative phosphorylation has a higher relative activity in visceral compared with subcutaneous adipose tissue.


Apmis | 2009

Expression of CPEB, GAPDH and U6snRNA in cervical and ovarian tissue during cancer development.

Christina Neigaard Hansen; Zohreh Ketabi; Maiken W. Rosenstierne; Connie Palle; Hans Christian Boesen; Bodil Norrild

Persistent infection with high‐risk human papillomavirus (HPV) and expression of the proteins E6 and E7 is a prerequisite for development of cervical cancer. The distal non‐coding part of E6/E7 messengers from several HPV types is able to downregulate synthesis of a reporter gene through mechanisms with involvement of cytoplasmic polyadenylation elements (CPEs) in the messengers. We here show that the mRNA levels of one of the four known CPE‐binding proteins (CPEBs), the CPEB3, were downregulated in HPV‐positive cervical cancers, whereas in ovarian cancer the CPEB1 mRNA level was downregulated. In addition, we showed that the RNA levels of the widely used reference marker GAPDH were upregulated in both cancer forms, and the level of the reference marker U6snRNA was upregulated in cervical cancers. Moreover, a possible correlation between the degree of U6snRNA upregulation and cervical cancer propagation was shown. These changes observed in CPEB1 and CPEB3 might indicate regulatory functions of CPEBs in cancer development of HPV‐positive and HPV‐negative tumors, respectively, and the U6snRNA, GAPDH mRNA and CPEB1 mRNA levels may be useful as tumor markers for genital cancers although further investigations are needed.


Journal of Applied Physiology | 2015

GAPDH and β-actin protein decreases with aging making Stain-Free technology a superior loading control in Western Blotting of human skeletal muscle

Andreas Vigelsø; Rie Dybboe; Christina Neigaard Hansen; Flemming Dela; Jørn Wulff Helge; Amelia Guadalupe Grau

Reference proteins (RP) or the total protein (TP) loaded is used to correct for uneven loading and/or transfer in Western blotting. However, the signal sensitivity and the influence of physiological conditions may question the normalization methods. Therefore, three widely used reference proteins [β-actin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and α-tubulin], as well as TP loaded measured by Stain-Free technology (SF) as normalization tool were tested. This was done using skeletal muscle samples from men subjected to physiological conditions often investigated in applied physiology where the intervention has been suggested to impede normalization (ageing, muscle atrophy, and different muscle fiber type composition). The linearity of signal and the methodological variation coefficient was obtained. Furthermore, the inter- and intraindividual variation in signals obtained from SF and RP was measured in relation to ageing, muscle atrophy, and different muscle fiber type composition, respectively. A stronger linearity of SF and β-actin compared with GAPDH and α-tubulin was observed. The methodological variation was relatively low in all four methods (4-11%). Protein level of β-actin and GAPDH was lower in older men compared with young men. In conclusion, β-actin, GAPDH, and α-tubulin may not be used for normalization in studies that include subjects with a large age difference. In contrast, the RPs may not be affected in studies that include muscle wasting and differences in muscle fiber type. The novel SF technology adds lower variation to the results compared with the existing methods for correcting for loading inaccuracy in Western blotting of human skeletal muscle in applied physiology.


Experimental Gerontology | 2014

Two weeks of one-leg immobilization decreases skeletal muscle respiratory capacity equally in young and elderly men.

Martin Gram; Andreas Vigelsø; Takashi Yokota; Christina Neigaard Hansen; Jørn Wulff Helge; Martin Hey-Mogensen; Flemming Dela

Physical inactivity affects human skeletal muscle mitochondrial oxidative capacity but the influence of aging combined with physical inactivity is not known. This study investigates the effect of two weeks of immobilization followed by six weeks of supervised cycle training on muscle oxidative capacity in 17 young (23±1years) and 15 elderly (68±1years) healthy men. We applied high-resolution respirometry in permeabilized fibers from muscle biopsies at inclusion after immobilization and training. Furthermore, protein content of mitochondrial complexes I-V, mitochondrial heat shock protein 70 (mtHSP70) and voltage dependent anion channel (VDAC) were measured in skeletal muscle by Western blotting. The elderly men had lower content of complexes I-V and mtHSP70 but similar respiratory capacity and content of VDAC compared to the young. In both groups the respiratory capacity and protein content of VDAC, mtHSP70 and complexes I, II, IV and V decreased with immobilization and increased with retraining. Moreover, there was no overall difference in the response between the groups. When the intrinsic mitochondrial capacity was evaluated by normalizing respiration to citrate synthase activity, the respiratory differences with immobilization and training disappeared. In conclusion, aging is not associated with a decrease in muscle respiratory capacity in spite of lower complexes I-V and mtHSP70 protein content. Furthermore, immobilization decreased and aerobic training increased the respiratory capacity and protein contents of complexes I-V, mtHSP70 and VDAC similarly in the two groups. This suggests that inactivity and training alter mitochondrial biogenesis equally in young and elderly men.


Diabetologia | 2012

Metformin-treated patients with type 2 diabetes have normal mitochondrial complex I respiration

Steen Larsen; Rasmus Rabøl; Christina Neigaard Hansen; Sten Madsbad; Jørn Wulff Helge; Flemming Dela

Aims/hypothesisThe glucose-lowering drug metformin has been shown to inhibit complex I of the mitochondrial electron transport chain in skeletal muscle. To investigate this effect in vivo we studied skeletal muscle mitochondrial respiratory capacity and content from patients with type 2 diabetes treated with metformin (n = 14) or sulfonylurea (n = 8) and healthy control (n = 18) participants.MethodsMitochondrial respiratory capacity was measured ex vivo in permeabilised muscle fibres obtained from the vastus lateralis muscle of all participants. The respiratory response to in vitro titration with metformin was measured in controls. Citrate synthase (CS) activity, and fasting plasma glucose, insulin and HbA1c levels were measured and body composition was determined.ResultsParticipants were matched for age, BMI and percentage body fat. Fasting plasma glucose concentrations were higher (p < 0.05) in those treated with sulfonylureas and metformin than in controls. CS activity was comparable between metformin-treated and control participants, but tended to be lower in those receiving sulfonylureas. Mitochondrial respiratory capacity with substrates for complex I and complex I and II was comparable in the groups, both when estimated per mg of tissue and when normalised to CS activity. In vitro metformin titration demonstrated a dose-dependent inhibitory effect on complex I and II in human skeletal muscle at suprapharmacological concentrations.Conclusions/interpretationMetformin treatment does not inhibit mitochondrial complex I respiration in the electron transport chain in human skeletal muscle of patients with type 2 diabetes when measured ex vivo. Inhibition of complex I and II respiration in controls was demonstrated by metformin titration in vitro at doses well above those observed during metformin treatment.


Diabetes, Obesity and Metabolism | 2010

Opposite effects of pioglitazone and rosiglitazone on mitochondrial respiration in skeletal muscle of patients with type 2 diabetes.

Rasmus Rabøl; Robert Boushel; Thomas Almdal; Christina Neigaard Hansen; Thorkil Ploug; Steen B. Haugaard; Clara Prats; S. Madsbad; Flemming Dela

Aim: Skeletal muscle insulin resistance has been linked to mitochondrial dysfunction. We examined how improvements in muscular insulin sensitivity following rosiglitazone (ROSI) or pioglitazone (PIO) treatment would affect muscle mitochondrial function in patients with type 2 diabetes mellitus (T2DM).


American Journal of Physiology-heart and Circulatory Physiology | 2013

Impaired mitochondrial function in chronically ischemic human heart.

Nis Stride; Steen Larsen; Martin Hey-Mogensen; Christina Neigaard Hansen; Clara Prats; Daniel A. Steinbrüchel; Lars Køber; Flemming Dela

Chronic ischemic heart disease is associated with myocardial hypoperfusion. The resulting hypoxia potentially inflicts damage upon the mitochondria, leading to a compromised energetic state. Furthermore, ischemic damage may cause excessive production of reactive oxygen species (ROS), producing mitochondrial damage, hereby reinforcing a vicious circle. Ischemic preconditioning has been proven protective in acute ischemia, but the subject of chronic ischemic preconditioning has not been explored in humans. We hypothesized that mitochondrial respiratory capacity would be diminished in chronic ischemic regions of human myocardium but that these mitochondria would be more resistant to ex vivo ischemia and, second, that ROS generation would be higher in ischemic myocardium. The aim of this study was to test mitochondrial respiratory capacity during hyperoxia and hypoxia, to investigate ROS production, and finally to assess myocardial antioxidant levels. Mitochondrial respiration in biopsies from ischemic and nonischemic regions from the left ventricle of the same heart was compared in nine human subjects. Maximal oxidative phosphorylation capacity in fresh muscle fibers was lower in ischemic compared with nonischemic myocardium (P < 0.05), but the degree of coupling (respiratory control ratio) did not differ (P > 0.05). The presence of ex vivo hypoxia did not reveal any chronic ischemic preconditioning of the ischemic myocardial regions (P > 0.05). ROS production was higher in ischemic myocardium (P < 0.05), and the levels of antioxidant protein expression was lower. Diminished mitochondrial respiration capacity and excessive ROS production demonstrate an impaired mitochondrial function in ischemic human heart muscle. No chronic ischemic preconditioning effect was found.


Journal of Applied Physiology | 2011

High-fat feeding inhibits exercise-induced increase in mitochondrial respiratory flux in skeletal muscle

Mette Skovbro; Robert Boushel; Christina Neigaard Hansen; Jørn Wulff Helge; Flemming Dela

Twenty one healthy untrained male subjects were randomized to follow a high-fat diet (HFD; 55-60E% fat, 25-30E% carbohydrate, and 15E% protein) or a normal diet (ND; 25-35E% fat, 55-60E% carbohydrate, and 10-15E% protein) for 2(1/2) wk. Diets were isocaloric and tailored individually to match energy expenditure. At 2(1/2) wk of diet, one 60-min bout of bicycle exercise (70% of maximal oxygen uptake) was performed. Muscle biopsies were obtained before and after the diet, immediately after exercise, and after 3-h recovery. Insulin sensitivity (hyperinsulinemic-euglycemic clamp) and intramyocellular triacylglycerol content did not change with the intervention in either group. Indexes of mitochondrial density were similar across the groups and intervention. Mitochondrial respiratory rates, measured in permeabilized muscle fibers, showed a 31 ± 11 and 26 ± 9% exercise-induced increase (P < 0.05) in state 3 (glycolytic substrates) and uncoupled respiration, respectively. However, in HFD this increase was abolished. At recovery, no change from resting respiration was seen in either group. With a lipid substrate (octanoyl-carnitine with or without ADP), similar exercise-induced increases (31-62%) were seen in HFD and ND, but only in HFD was an elevated (P < 0.05) respiratory rate seen at recovery. With HFD complex I and IV protein expression decreased (P < 0.05 and P = 0.06, respectively). A fat-rich diet induces marked changes in the mitochondrial electron transport system protein content and in exercise-induced mitochondrial substrate oxidation rates, with the effects being present hours after the exercise. The effect of HFD is present even without effects on insulin sensitivity and intramyocellular lipid accumulation. An isocaloric high-fat diet does not cause insulin resistance.

Collaboration


Dive into the Christina Neigaard Hansen's collaboration.

Top Co-Authors

Avatar

Flemming Dela

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nis Stride

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Steen Larsen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Clara Prats

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Robert Boushel

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bodil Norrild

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Daniel A. Steinbrüchel

Copenhagen University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge