Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina R. Maxwell is active.

Publication


Featured researches published by Christina R. Maxwell.


Journal of Cognitive Neuroscience | 2010

Ketamine modulates theta and gamma oscillations

Maciej T. Lazarewicz; Richard S. Ehrlichman; Christina R. Maxwell; Michael J. Gandal; Leif H. Finkel; Steven J. Siegel

Ketamine, an N-methyl-d-aspartate (NMDA) receptor glutamatergic antagonist, has been studied as a model of schizophrenia when applied in subanesthetic doses. In EEG studies, ketamine affects sensory gating and alters the oscillatory characteristics of neuronal signals in a complex manner. We investigated the effects of ketamine on in vivo recordings from the CA3 region of mouse hippocampus referenced to the ipsilateral frontal sinus using a paired-click auditory gating paradigm. One issue of particular interest was elucidating the effect of ketamine on background network activity, poststimulus evoked and induced activity. We find that ketamine attenuates the theta frequency band in both background activity and in poststimulus evoked activity. Ketamine also disrupts a late, poststimulus theta power reduction seen in control recordings. In the gamma frequency range, ketamine enhances both background and evoked power, but decreases relative induced power. These findings support a role for NMDA receptors in mediating the balance between theta and gamma responses to sensory stimuli, with possible implications for dysfunction in schizophrenia.


Neuroscience | 2009

N-methyl-d-aspartic acid receptor antagonist-induced frequency oscillations in mice recreate pattern of electrophysiological deficits in schizophrenia.

Richard S. Ehrlichman; Michael J. Gandal; Christina R. Maxwell; Maciej T. Lazarewicz; Leif H. Finkel; D. Contreras; B.I. Turetsky; Steven J. Siegel

INTRODUCTION Electrophysiological responses to auditory stimuli have provided a useful means of elucidating mechanisms and evaluating treatments in psychiatric disorders. Deficits in gating during paired-click tasks and lack of mismatch negativity following deviant stimuli have been well characterized in patients with schizophrenia. Recently, analyses of basal, induced, and evoked frequency oscillations have gained support as additional measures of cognitive processing in patients and animal models. The purpose of this study is to examine frequency oscillations in mice across the theta (4-7.5 Hz) and gamma (31-61 Hz) bands in the context of N-methyl-d-aspartic acid receptor (NMDAR) hypofunction and dopaminergic hyperactivity, both of which are thought to serve as pharmacological models of schizophrenia. EXPERIMENTAL PROCEDURES Electroencephalograms (EEG) were recorded from mice in five treatment groups that consisted of haloperidol, risperidone, amphetamine, ketamine, or ketamine plus haloperidol during an auditory task. Basal, induced and evoked powers in both frequencies were calculated. RESULTS Ketamine increased basal power in the gamma band and decreased the evoked power in the theta band. The increase in basal gamma was not blocked by treatment with a conventional antipsychotic. No other treatment group was able to fully reproduce this pattern in the mice. CONCLUSIONS Ketamine-induced alterations in EEG power spectra are consistent with abnormalities in the theta and gamma frequency ranges reported in patients with schizophrenia. Our findings support the hypothesis that NMDAR hypofunction contributes to the deficits in schizophrenia and that the dopaminergic pathways alone may not account for these changes.


Journal of Cognitive Neuroscience | 2008

Deviance-elicited Changes in Event-related Potentials are Attenuated by Ketamine in Mice

Richard S. Ehrlichman; Christina R. Maxwell; Sonalee Majumdar; Steven J. Siegel

Background: People with schizophrenia exhibit reduced ability to detect change in the auditory environment, which has been linked to abnormalities in N-methyl-D-aspartate (NMDA) receptor-mediated glutamate neurotransmission. This ability to detect changes in stimulus qualities can be measured with electroencephalography using auditory event-related potentials (ERPs). For example, reductions in the N100 and mismatch negativity (MMN), in response to pitch deviance, have been proposed as endophenotypes of schizophrenia. This study examines a novel rodent model of impaired pitch deviance detection in mice using the NMDA receptor antagonist ketamine. Methods: ERPs were recorded from unanesthetized mice during a pitch deviance paradigm prior to and following ketamine administration. First, N40 amplitude was evaluated using stimuli between 4 and 10 kHz to assess the amplitude of responses across the frequency range used. The amplitude and latency of the N40 were analyzed following standard (7 kHz) and deviant (59 kHz) stimuli. Additionally, we examined which portions of the ERP are selectively altered by pitch deviance to define possible regions for the mouse MMN. Results: Mice displayed increased N40 amplitude that was followed by a later negative component between 50 and 75 msec in response to deviant stimuli. Both the increased N40 and the late N40 negativity were attenuated by ketamine. Ketamine increased N40 latency for both standard and deviant stimuli alike. Conclusions: The mouse N40 and a subsequent temporal region have deviance response properties similar to the human N100 and, possibly, MMN. Deviance responses were abolished by ketamine, suggesting that ketamine-induced changes in mice mimic deviance detection deficits in schizophrenia.


Neuroscience | 2004

Phosphodiesterase inhibitors: A novel mechanism for receptor-independent antipsychotic medications

Christina R. Maxwell; Stephen J. Kanes; Ted Abel; Steven J. Siegel

OVERVIEW All current antipsychotic medications work by binding to Gi-coupled dopamine (DA) D2 receptors. Such medications are thought to affect cellular function primarily by decreasing DA-mediated regulation of intracellular cyclic adenosine monophosphate (cAMP).However, several studies indicate that cAMP signal transduction abnormalities in schizophrenia may not be limited to D2-containing cells. The current study examines the potential of using non-receptor-based agents that modify intracellular signal transduction as potential antipsychotic medications. METHODS The indirect DA agonist amphetamine has been used to model the auditory sensory processing deficits in schizophrenia. Such pharmacologically induced abnormalities are reversed by current antipsychotic treatments. This study examines the ability of the phosphodiesterase-4 inhibitor, rolipram, to reverse amphetamine-induced abnormalities in auditory-evoked potentials that are characteristic of schizophrenia. RESULTS Rolipram reverses amphetamine-induced reductions in auditory-evoked potentials. CONCLUSION This finding could lead to novel approaches to receptor-independent treatments for schizophrenia.


Neurochemical Research | 2004

The Effects of Ketamine Vary Among Inbred Mouse Strains and Mimic Schizophrenia for the P80, but not P20 or N40 Auditory ERP Components

Patrick M. Connolly; Christina R. Maxwell; Yuling Liang; Jonathan B. Kahn; Stephen J. Kanes; Ted Abel; Raquel E. Gur; Bruce I. Turetsky; Steven J. Siegel

N-methyl-D-aspartate (NMDA) antagonists produce behavioral and electrophysiological effects similar to schizophrenia. The mouse P20, N40, and P80 event related potential (ERP) components were analyzed for genetic variance among inbred strains and ketamine-induced differences to model abnormalities in the P50, N100, and P200 in schizophrenia. Ketamine increased P20/N40 amplitude and decreased P80 amplitude. Therefore, the effects of ketamine in mice are inconsistent with alterations in the corresponding P50 and N100 in schizophrenia, suggesting that NMDA receptor dysfunction may not underlie abnormalities of these components in schizophrenia. However, the effects of ketamine on the mouse P80 were consistent with P200 ERP changes in schizophrenia and support the hypothesis that NMDA dysfunction may contribute to some neuronal abnormalities in schizophrenia. The current study lays the groundwork for defining the role of NMDA-mediated transmission for specific aspects of neuronal processing that vary with genetic background. Future studies could use transcription profiling to clarify such interactions between genetic background, specific neuronal circuits, and transmitter systems.


Neuropsychopharmacology | 2004

Effects of chronic olanzapine and haloperidol differ on the mouse N1 auditory evoked potential.

Christina R. Maxwell; Yuling Liang; Bryanne D Weightman; Stephen J. Kanes; Ted Abel; Raquel E. Gur; Bruce I. Turetsky; Warren B. Bilker; Robert H. Lenox; Steven J. Siegel

Auditory evoked potentials have been used in a variety of animal models to assess information-processing impairments in schizophrenia. Previous mouse models have primarily employed a paired click paradigm to assess the transient measures of auditory gating. The current study uses stimulus trains at varied interstimulus intervals (ISI) between 0.25 and 8 s in mice to assess the effects of chronic olanzapine and haloperidol on auditory processing. Data indicate that olanzapine increases the amplitude of the N40, P80, and P20/N40 components of the auditory evoked potential, whereas haloperidol had no such effect. The ISI paradigm also allowed for an evaluation of several components of the mouse evoked potential to assess those that display response properties similar to the human P50 and N100. Data suggest that the mouse N40 displays an ISI response relationship that shares characteristics with the human N100, whereas the P20 appears more consistent with the human P50 across the ISI range evaluated in this task. This study suggests that olanzapine may help improve N100 impairments seen in schizophrenia, while haloperidol does not.


Biological Psychiatry | 2007

Effects of Nicotine Vary Across Two Auditory Evoked Potentials in the Mouse

Kayla Metzger; Christina R. Maxwell; Yuling Liang; Steven J. Siegel

BACKGROUND Schizophrenia patients display sensory processing deficits, reduced alpha7-nicotine receptor expression, and increased incidence of smoking, prompting investigation of nicotine receptor agonists as possible treatments. We evaluated the effects of acute and chronic nicotine, using an animal model that incorporates genetic variation for sensory processing and nicotine sensitivity. METHODS C57BL/6J and DBA/2Hsd mice received 2 weeks of 4.2 mg/kg chronic nicotine or saline. Auditory evoked potentials were recorded before and after acute nicotine injection of 1.05 mg/kg on day 14, with a paired-click paradigm (S1/S2). Amplitude and gating of the P20 and N40 were compared between conditions. RESULTS Acute nicotine increased the amplitude and gating of the P20 and decreased the amplitude and gating of the N40 across all groups, primarily by acting on S1. Chronic nicotine attenuated the effects of acute nicotine on the N40. CONCLUSIONS Our data support the notion that the mouse P20 shares pharmacological response properties with the human P50. In addition, findings suggest that nicotine might increase the initial sensory response (S1), with a resulting improvement in gating of some components.


Brain Research | 2003

Inhibition of auditory evoked potentials and prepulse inhibition of startle in DBA/2J and DBA/2Hsd inbred mouse substrains

Patrick M. Connolly; Christina R. Maxwell; Stephen J. Kanes; Ted Abel; Yuling Liang; Jan Tokarczyk; Warren B. Bilker; Bruce I. Turetsky; Raquel E. Gur; Steven J. Siegel

Previous data have shown differences among inbred mouse strains in sensory gating of auditory evoked potentials, prepulse inhibition (PPI) of startle, and startle amplitude. These measures of sensory and sensorimotor gating have both been proposed as models for genetic determinants of sensory processing abnormalities in patients with schizophrenia and their first-degree relatives. Data from our laboratory suggest that auditory evoked potentials of DBA/2J mice differ from those previously described for DBA/2Hsd. Therefore, we compared evoked potentials and PPI in these two closely related substrains based on the hypothesis that any observed endophenotypic differences are more likely to distinguish relevant from incidental genetic heterogeneity than similar approaches using inbred strains that vary across the entire genome. We found that DBA/2Hsd substrain exhibited reduced inhibition of evoked potentials and reduced startle relative to the DBA/2J substrain without alterations in auditory sensitivity, amplitude of evoked potentials or PPI of startle. These results suggest that gating of auditory evoked potentials and PPI of startle measure different aspects of neuronal function. The differences between the substrains might reflect genetic drift. Alternatively, differences could arise from different rearing environments or other non-genetic factors. Future studies will attempt to determine the cause of these differences in sensory and sensorimotor processing between these two closely related inbred mouse strains.


Neuroscience | 2005

Monoamine reuptake inhibition and nicotine receptor antagonism reduce amplitude and gating of auditory evoked potentials

Steven J. Siegel; Christina R. Maxwell; S. Majumdar; D.F. Trief; Caryn Lerman; Raquel E. Gur; Stephen J. Kanes; Yuling Liang

BACKGROUND Sensory encoding deficits have been extensively studied as endophenotypic markers of schizophrenia using auditory evoked potentials. In order to increase understanding of the neurochemical basis of such deficits, we utilized an animal model to test whether monoamine reuptake inhibition and nicotine receptor antagonism reduce the amplitude and gating of the P20 and N40 auditory components. METHODS C57BL/6J mice received 12 days of chronic vehicle, bupropion, haloperidol or bupropion plus haloperidol. Auditory evoked potentials were then recorded in alert mice to measure the amplitude and gating of evoked components during a paired click paradigm similar to tasks used to measure the P50 and N100 auditory potentials in schizophrenia. Evoked potentials were recorded prior to and following acute nicotine. RESULTS Bupropion reduced the amplitude and gating of the N40 evoked potential in mice, similar to the P50 and N100 endophenotypes associated with sensory encoding deficits in schizophrenia. This deficit was fully reversed only by the combination of haloperidol and nicotine, suggesting that dopamine reuptake inhibition and nicotine antagonism both contribute to the observed phenotype. Furthermore, nicotine increased P20 amplitude across all groups supporting a role for nicotine agonists in pre-attentive sensory encoding deficits. CONCLUSIONS We propose that the combination of monoamine inhibition and nicotine receptor antagonism may serve as a useful model for preclinical screening of pharmaceutical compounds aimed at treating sensory encoding deficits in schizophrenia.


Headache | 2012

Spontaneous Trigeminal Allodynia in Rats: A Model of Primary Headache

Michael L. Oshinsky; Menka M. Sanghvi; Christina R. Maxwell; Dorian Gonzalez; Rebecca Jay Spangenberg; Marnie Cooper; Stephen D. Silberstein

Animal models are essential for studying the pathophysiology of headache disorders and as a screening tool for new therapies. Most animal models modify a normal animal in an attempt to mimic migraine symptoms. They require manipulation to activate the trigeminal nerve or dural nociceptors. At best, they are models of secondary headache. No existing model can address the fundamental question: How is a primary headache spontaneously initiated? In the process of obtaining baseline periorbital von Frey thresholds in a wild‐type Sprague‐Dawley rat, we discovered a rat with spontaneous episodic trigeminal allodynia (manifested by episodically changing periorbital pain threshold). Subsequent mating showed that the trait is inherited. Animals with spontaneous trigeminal allodynia allow us to study the pathophysiology of primary recurrent headache disorders. To validate this as a model for migraine, we tested the effects of clinically proven acute and preventive migraine treatments on spontaneous changes in rat periorbital sensitivity. Sumatriptan, ketorolac, and dihydroergotamine temporarily reversed the low periorbital pain thresholds. Thirty days of chronic valproic acid treatment prevented spontaneous changes in trigeminal allodynia. After discontinuation, the rats returned to their baseline of spontaneous episodic threshold changes. We also tested the effects of known chemical human migraine triggers. On days when the rats did not have allodynia and showed normal periorbital von Frey thresholds, glycerol trinitrate and calcitonin gene related peptide induced significant decreases in the periorbital pain threshold. This model can be used as a predictive model for drug development and for studies of putative biomarkers for headache diagnosis and treatment.

Collaboration


Dive into the Christina R. Maxwell's collaboration.

Top Co-Authors

Avatar

Steven J. Siegel

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Yuling Liang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Kanes

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ted Abel

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raquel E. Gur

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge