Christina Restall
Peter MacCallum Cancer Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christina Restall.
American Journal of Pathology | 2009
Erica K. Sloan; Daniel R. Ciocca; Normand Pouliot; Anthony Natoli; Christina Restall; Michael A. Henderson; Mariel A. Fanelli; Fernando D. Cuello-Carrión; Francisco E. Gago; Robin L. Anderson
Caveolin-1 has been linked to tumor progression and clinical outcome in breast cancer, but a clear resolution of its role as a prognostic marker is lacking. We assessed caveolin-1 levels in normal breast tissue and two breast cancer cohorts for which outcome data were available. We found that caveolin-1 was not expressed in normal breast luminal epithelium but was present in the epithelial compartment of some tumors. We found no association between caveolin-1 expression in the epithelial compartment and clinical outcome. However, high levels of caveolin-1 in the stromal tissue surrounding the tumor, rather than within tumor cells, associated strongly with reduced metastasis and improved survival (P < 0.0001). The onset of mammary tumors driven by Her2/neu overexpression was accelerated in mice lacking caveolin-1, thereby supporting the observation that the presence of caveolin-1 in the tumor microenvironment modulates tumor development. These studies suggest that stromal caveolin-1 expression may be a potential therapeutic target and a valuable prognostic indicator of breast cancer progression.
International Journal of Radiation Oncology Biology Physics | 2010
Jeffrey C. Crosbie; Robin L. Anderson; Kai Rothkamm; Christina Restall; Leonie Cann; Saleela Ruwanpura; Sarah J. Meachem; Naoto Yagi; Imants D. Svalbe; Robert A. Lewis; Bryan R. G. Williams; Peter A. W. Rogers
PURPOSE High-dose synchrotron microbeam radiation therapy (MRT) can be effective at destroying tumors in animal models while causing very little damage to normal tissues. The aim of this study was to investigate the cellular processes behind this observation of potential clinical importance. METHODS AND MATERIALS MRT was performed using a lattice of 25 mum-wide, planar, polychromatic, kilovoltage X-ray microbeams, with 200-microm peak separation. Inoculated EMT-6.5 tumor and normal mouse skin tissues were harvested at defined intervals post-MRT. Immunohistochemical detection of gamma-H2AX allowed precise localization of irradiated cells, which were also assessed for proliferation and apoptosis. RESULTS MRT significantly reduced tumor cell proliferation by 24 h post-irradiation (p = 0.002). An unexpected finding was that within 24 h of MRT, peak and valley irradiated zones were indistinguishable in tumors because of extensive cell migration between the zones. This was not seen in MRT-treated normal skin, which appeared to undergo a coordinated repair response. MRT elicited an increase in median survival times of EMT-6.5 and 67NR tumor-inoculated mice similar to that achieved with conventional radiotherapy, while causing markedly less normal tissue damage. CONCLUSIONS This study provides evidence of a differential response at a cellular level between normal and tumor tissues after synchrotron MRT.
Cancer immunology research | 2014
Agnieszka Swierczak; Andrew D. Cook; Jason C. Lenzo; Christina Restall; Judy P. Doherty; Robin L. Anderson; John A. Hamilton
Swierczak and colleagues show that blockade of CSF-1R signaling promoted metastasis in two mouse mammary tumor models, with increases in serum G-CSF and neutrophils, which can be overcome by anti–G-CSFR antibodies, raising concerns about targeting CSF-1R as breast cancer therapy. Treatment options are limited for patients with breast cancer presenting with metastatic disease. Targeting of tumor-associated macrophages through the inhibition of colony-stimulating factor-1 receptor (CSF-1R), a key macrophage signaling pathway, has been reported to reduce tumor growth and metastasis, and these treatments are now in clinical trials. Here, we report that, surprisingly, treatment with neutralizing anti–CSF-1R and anti–CSF-1 antibodies, or with two different small-molecule inhibitors of CSF-1R, could actually increase spontaneous metastasis without altering primary tumor growth in mice bearing two independently derived mammary tumors. The blockade of CSF-1R or CSF-1 led to increased levels of serum G-CSF, increased frequency of neutrophils in the primary tumor and in the metastasis-associated lung, as well as increased numbers of neutrophils and Ly6Chi monocytes in the peripheral blood. Neutralizing antibody against the G-CSF receptor, which regulates neutrophil development and function, reduced the enhanced metastasis and neutrophil numbers that resulted from CSF-1R blockade. These results indicate that the role of the CSF-1R/CSF-1 system in breast cancer is far more complex than originally proposed, and requires further investigation as a therapeutic target. Cancer Immunol Res; 2(8); 765–76. ©2014 AACR.
Hepatology | 2012
Manuel A. Fernandez-Rojo; Christina Restall; Charles Ferguson; Nick Martel; Sally Martin; Marta Bosch; Adam Kassan; Gary M. Leong; Sheree D. Martin; Sean L. McGee; George E. O. Muscat; Robin L. Anderson; Carlos Enrich; Albert Pol; Robert G. Parton
Caveolin‐1 (CAV1) is a structural protein of caveolae involved in lipid homeostasis and endocytosis. Using newly generated pure Balb/C CAV1 null (Balb/CCAV1−/−) mice, CAV1−/− mice from Jackson Laboratories (JAXCAV1−/−), and CAV1−/− mice developed in the Kurzchalia Laboratory (KCAV1−/−), we show that under physiological conditions CAV1 expression in mouse tissues is necessary to guarantee an efficient progression of liver regeneration and mouse survival after partial hepatectomy. Absence of CAV1 in mouse tissues is compensated by the development of a carbohydrate‐dependent anabolic adaptation. These results were supported by extracellular flux analysis of cellular glycolytic metabolism in CAV1‐knockdown AML12 hepatocytes, suggesting cell autonomous effects of CAV1 loss in hepatic glycolysis. Unlike in KCAV1−/− livers, in JAXCAV1−/− livers CAV1 deficiency is compensated by activation of anabolic metabolism (pentose phosphate pathway and lipogenesis) allowing liver regeneration. Administration of 2‐deoxy‐glucose in JAXCAV1−/− mice indicated that liver regeneration in JAXCAV1−/− mice is strictly dependent on hepatic carbohydrate metabolism. Moreover, with the exception of regenerating JAXCAV1−/− livers, expression of CAV1 in mice is required for efficient hepatic lipid storage during fasting, liver regeneration, and diet‐induced steatosis in the three CAV1−/− mouse strains. Furthermore, under these conditions CAV1 accumulates in the lipid droplet fraction in wildtype mouse hepatocytes. Conclusion: Our data demonstrate that lack of CAV1 alters hepatocyte energy metabolism homeostasis under physiological and pathological conditions. (HEPATOLOGY 2011)
Disease Models & Mechanisms | 2015
Cameron N. Johnstone; Yvonne E. Smith; Yuan Cao; Allan D. Burrows; Ryan S. Cross; Xiawei Ling; Richard P. Redvers; Judy P. Doherty; Bedrich L. Eckhardt; Anthony Natoli; Christina Restall; Erin Lucas; Helen B. Pearson; Siddhartha Deb; Kara L. Britt; Alexandra Rizzitelli; Jason Li; Judith H. Harmey; Normand Pouliot; Robin L. Anderson
The translation of basic research into improved therapies for breast cancer patients requires relevant preclinical models that incorporate spontaneous metastasis. We have completed a functional and molecular characterisation of a new isogenic C57BL/6 mouse model of breast cancer metastasis, comparing and contrasting it with the established BALB/c 4T1 model. Metastatic EO771.LMB tumours were derived from poorly metastatic parental EO771 mammary tumours. Functional differences were evaluated using both in vitro assays and spontaneous metastasis assays in mice. Results were compared to non-metastatic 67NR and metastatic 4T1.2 tumours of the 4T1 model. Protein and transcript levels of markers of human breast cancer molecular subtypes were measured in the four tumour lines, as well as p53 (Tp53) tumour-suppressor gene status and responses to tamoxifen in vivo and in vitro. Array-based expression profiling of whole tumours identified genes and pathways that were deregulated in metastatic tumours. EO771.LMB cells metastasised spontaneously to lung in C57BL/6 mice and displayed increased invasive capacity compared with parental EO771. By immunohistochemical assessment, EO771 and EO771.LMB were basal-like, as was the 4T1.2 tumour, whereas 67NR had a luminal phenotype. Primary tumours from all lines were negative for progesterone receptor, Erb-b2/Neu and cytokeratin 5/6, but positive for epidermal growth factor receptor (EGFR). Only 67NR displayed nuclear estrogen receptor alpha (ERα) positivity. EO771 and EO771.LMB expressed mutant p53, whereas 67NR and 4T1.2 were p53-null. Integrated molecular analysis of both the EO771/EO771.LMB and 67NR/4T1.2 pairs indicated that upregulation of matrix metalloproteinase-3 (MMP-3), parathyroid hormone-like hormone (Pthlh) and S100 calcium binding protein A8 (S100a8) and downregulation of the thrombospondin receptor (Cd36) might be causally involved in metastatic dissemination of breast cancer.
International Journal of Cancer | 2004
Kristina Cakarovski; Jenny Y. Leung; Christina Restall; Anna Carin-Carlson; Eunice Yang; Patrick Perlmutter; Robin L. Anderson; Robert L. Medcalf; Anthony E. Dear
The plasminogen‐activating (PA) and matrix metalloproteinase (MMP) enzyme systems are implicated in proteolytic turnover of the extracellular matrix (ECM) associated with biologic processes including wound healing, inflammation and angiogenesis. Aberrant expression of components of the PA and MMP enzyme systems occurs in the pathogenesis of metastatic cancer. Oxamflatin (Ox), a novel hydroxamic acid derivative, inhibits u‐PA mRNA expression and proteolytic activity while simultaneously upregulating the expression of the natural inhibitor of u‐PA, plasminogen activator inhibitor type 2 (PAI‐2) in metastatic cancer cells. We have characterized the effects of Ox and a novel derivative, Metacept‐1 (MCT‐1), on PA and MMP‐mediated proteolysis and invasion in several metastatic tumor lines. Both compounds are able to inhibit u‐PA‐, MMP‐2‐ and MMP‐9‐mediated gene expression at low micromolar concentrations as well as u‐PA‐ and MMP‐mediated proteolysis as assessed by zymography, with MCT‐1 being the more effective of the 2 agents in some assays. Cellular invasion assays correlate with gene expression and zymography experiments identifying both Ox and MCT‐1 as able to inhibit invasion of metastatic cancer cell lines through matrigel at nanomolar concentrations, with MCT‐1 more effective than Ox in 2 of the 3 cancer cell lines assessed.
Clinical & Experimental Metastasis | 2015
Andrew C. Chang; Judy P. Doherty; Lily I. Huschtscha; Richard P. Redvers; Christina Restall; Roger R. Reddel; Robin L. Anderson
Stanniocalcin-1 (STC1) is a secreted glycoprotein implicated in several pathologies including retinal degeneration, cerebral ischemia, angiogenesis and inflammation. Aberrant STC1 expression has been reported in breast cancer but the significance of this is not clear. High levels of STC1 expression were found in the aggressive 4T1 murine mammary tumor cells and in the MDA-MB-231 human breast cancer line. To investigate its significance, stable clones with STC1 down-regulation using shRNA were generated in both tumor models. The consequences of STC1 down-regulation on cell proliferation, chemotactic invasion, tumor growth and metastasis were assessed. Down-regulation of STC1 in the 4T1 murine mammary tumor cells had a major impact on mammary tumor growth. This observation was replicated in a second tumor model with the MDA-MB-231 human breast cancer line, with a significant reduction in primary tumor formation and a major inhibition of metastasis as well. Interestingly, in both models, proliferation in vitro was not affected. Subsequent microarray gene expression profiling identified 30 genes to be significantly altered by STC1 down-regulation, the majority of which are associated with known hallmarks of carcinogenesis. Furthermore, bioinformatic analysis of breast cancer datasets revealed that high expression of STC1 is associated with poor survival. This is the first study to show definitively that STC1 plays an oncogenic role in breast cancer, and indicates that STC1 could be a potential therapeutic target for treatment of breast cancer patients.
International Journal of Cancer | 2009
Christina Restall; Judy P. Doherty; Hong Bin Liu; Rosemary Genovese; Lisa Paiman; Keith Byron; Robin L. Anderson; Anthony E. Dear
Earlier we generated novel derivatives of the hydroxamate‐based histone deacetylase inhibitor (HDACi), Oxamflatin (Ox), which demonstrate considerable HDACi activity. Here the effects of one such derivative, Metacept‐1 (MCT‐1), alone or in combination with tamoxifen on mammary tumour growth have been assessed in a syngeneic orthotopic model. MCT‐1 alone resulted in a trend towards inhibition of growth of 4T1.2 mammary tumours. Since the combination of MCT‐1 and tamoxifen up‐regulates estrogen receptor expression in 4T1.2 cells in vitro, we tested this combination and found a significant reduction in primary tumour growth over tamoxifen treatment alone. Taken together, these observations suggest that the novel HDACi MCT‐1 may warrant further exploration in the treatment of estrogen receptor positive breast carcinoma, particularly when used in combination with conventional agents such as tamoxifen.
Genetics Research | 2013
Elizabeth Purdom; Christina Restall; Rita A. Busuttil; Schluter H; Alex Boussioutas; Erik W. Thompson; Robin L. Anderson; Terence P. Speed; Izhak Haviv
Gene expression profiling using microarrays and xenograft transplants of human cancer cell lines are both popular tools to investigate human cancer. However, the undefined degree of cross hybridization between the mouse and human genomes hinders the use of microarrays to characterize gene expression of both the host and the cancer cell within the xenograft. Since an increasingly recognized aspect of cancer is the host response (or cancer-stroma interaction), we describe here a bioinformatic manipulation of the Affymetrix profiling that allows interrogation of the gene expression of both the mouse host and the human tumour. Evidence of microenvironmental regulation of epithelial mesenchymal transition of the tumour component in vivo is resolved against a background of mesenchymal gene expression. This tool could allow deeper insight to the mechanism of action of anti-cancer drugs, as typically novel drug efficacy is being tested in xenograft systems.
Cell Stress & Chaperones | 2013
F. Darío Cuello-Carrión; Niubys Cayado-Gutiérrez; Anthony Natoli; Christina Restall; Robin L. Anderson; Silvina Beatriz Nadin; Daiana Alvarez-Olmedo; Gisela N. Castro; Francisco E. Gago; Mariel A. Fanelli; Daniel R. Ciocca
In a recent study, we have shown that in mammary tumors from mice lacking the Cav-1 gene, there are alterations in specific heat shock proteins as well as in tumor development. With this in mind, we have now investigated other proteins in the same mammary mouse tumor model (Her-2/neu expressing mammary tumors from Cav-1 wild type and Cav-1 null mice), to further comprehend the complex tumor-stroma mechanisms involved in regulating stress responses during tumor development. In this tumor model the cancer cells always lacked of Cav-1, so the KO influenced the Cav-1 in the stroma. By immunohistochemistry, we have found a striking co-expression of β-catenin and Her-2/neu in the tumor cells. The absence of Cav-1 in the tumor stroma had no effect on expression or localization of β-catenin and Her-2/neu. Both proteins appeared co-localized at the cell surface during tumor development and progression. Since Her-2/neu activation induces MTA1, we next evaluated MTA1 in the mouse tumors. Although this protein was found in numerous nuclei, the absence of Cav-1 did not alter its expression level. In contrast, significantly more PTEN protein was noted in the tumors lacking Cav-1 in the stroma, with the protein localized mainly in the nuclei. P-Akt levels were relatively low in tumors from both Cav-1 WT and Cav-1 KO mice. There was also an increase in nuclear NHERF1 expression levels in the tumors arising from Cav-1 KO mice. The data obtained in the MMTV-neu model are consistent with a role for Cav-1 in adjacent breast cancer stromal cells in modulating the expression and localization of important proteins implicated in tumor cell behavior.