Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina Schlumbohm is active.

Publication


Featured researches published by Christina Schlumbohm.


Behavioral and Brain Functions | 2011

Activity-dependent regulation of MHC class I expression in the developing primary visual cortex of the common marmoset monkey

Adema Ribic; Gabriele Flügge; Christina Schlumbohm; Kerstin Mätz-Rensing; Lutz Walter; Eberhard Fuchs

BackgroundSeveral recent studies have highlighted the important role of immunity-related molecules in synaptic plasticity processes in the developing and adult mammalian brains. It has been suggested that neuronal MHCI (major histocompatibility complex class I) genes play a role in the refinement and pruning of synapses in the developing visual system. As a fast evolutionary rate may generate distinct properties of molecules in different mammalian species, we studied the expression of MHCI molecules in a nonhuman primate, the common marmoset monkey (Callithrix jacchus).Methods and resultsAnalysis of expression levels of MHCI molecules in the developing visual cortex of the common marmoset monkeys revealed a distinct spatio-temporal pattern. High levels of expression were detected very early in postnatal development, at a stage when synaptogenesis takes place and ocular dominance columns are formed. To determine whether the expression of MHCI molecules is regulated by retinal activity, animals were subjected to monocular enucleation. Levels of MHCI heavy chain subunit transcripts in the visual cortex were found to be elevated in response to monocular enucleation. Furthermore, MHCI heavy chain immunoreactivity revealed a banded pattern in layer IV of the visual cortex in enucleated animals, which was not observed in control animals. This pattern of immunoreactivity indicated that higher expression levels were associated with retinal activity coming from the intact eye.ConclusionsThese data demonstrate that, in the nonhuman primate brain, expression of MHCI molecules is regulated by neuronal activity. Moreover, this study extends previous findings by suggesting a role for neuronal MHCI molecules during synaptogenesis in the visual cortex.


Brain Pathology | 2006

Intrauterine Exposure to Dexamethasone Impairs Proliferation But Not Neuronal Differentiation in the Dentate Gyrus of Newborn Common Marmoset Monkeys

Simone C. Tauber; Christina Schlumbohm; Lenka Schilg; Eberhard Fuchs; Roland Nau; Joachim Gerber

Glucocorticoids applied prenatally alter birth weight and the maturation of the lungs. Moreover, glucocorticoids impair neuronal proliferation and differentiation in the hippocampal dentate gyrus. In the present study proliferation and neuronal differentiation in the dentate gyrus were studied in newborn common marmoset monkeys which were intrauterinely exposed to the synthetic glucocorticoid dexamethasone (DEX). Pregnant marmoset monkeys received DEX (5 mg/kg body weight) daily either during early (days 42–48) or late (days 90–96) pregnancy. In the hippocampi of newborn monkeys immunohistochemistry was performed with markers of proliferation (Ki‐67), apoptosis (in situ tailing) as well as early and late neuronal differentiation (calretinin and calbindin). Both after early and late intrauterine exposure to DEX, proliferation of dentate gyrus cells was significantly decreased (P < 0.05). The density of apoptotic neurons was not altered by DEX treatment. Quantification of calretinin‐ and calbindin‐immunoreactive neurons showed no significant differences between DEX‐exposed and control animals. In conclusion, the proliferation of putative precursor cells but not the differentiation into mature cells was impaired in the dentate gyrus of newborn marmosets exposed intrauterinely to DEX.


PLOS ONE | 2012

LPS-Induced Lung Inflammation in Marmoset Monkeys – An Acute Model for Anti-Inflammatory Drug Testing

Sophie Seehase; Hans-Dieter Lauenstein; Christina Schlumbohm; Simone Switalla; Vanessa Neuhaus; Christine Förster; Hans-Gerd Fieguth; Olaf Pfennig; Eberhard Fuchs; Franz Josef Kaup; Martina Bleyer; Jens M. Hohlfeld; Armin Braun; Katherina Sewald; Sascha Knauf

Increasing incidence and substantial morbidity and mortality of respiratory diseases requires the development of new human-specific anti-inflammatory and disease-modifying therapeutics. Therefore, new predictive animal models that closely reflect human lung pathology are needed. In the current study, a tiered acute lipopolysaccharide (LPS)-induced inflammation model was established in marmoset monkeys (Callithrix jacchus) to reflect crucial features of inflammatory lung diseases. Firstly, in an ex vivo approach marmoset and, for the purposes of comparison, human precision-cut lung slices (PCLS) were stimulated with LPS in the presence or absence of the phosphodiesterase-4 (PDE4) inhibitor roflumilast. Pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α) and macrophage inflammatory protein-1 beta (MIP-1β) were measured. The corticosteroid dexamethasone was used as treatment control. Secondly, in an in vivo approach marmosets were pre-treated with roflumilast or dexamethasone and unilaterally challenged with LPS. Ipsilateral bronchoalveolar lavage (BAL) was conducted 18 hours after LPS challenge. BAL fluid was processed and analyzed for neutrophils, TNF-α, and MIP-1β. TNF-α release in marmoset PCLS correlated significantly with human PCLS. Roflumilast treatment significantly reduced TNF-α secretion ex vivo in both species, with comparable half maximal inhibitory concentration (IC50). LPS instillation into marmoset lungs caused a profound inflammation as shown by neutrophilic influx and increased TNF-α and MIP-1β levels in BAL fluid. This inflammatory response was significantly suppressed by roflumilast and dexamethasone. The close similarity of marmoset and human lungs regarding LPS-induced inflammation and the significant anti-inflammatory effect of approved pharmaceuticals assess the suitability of marmoset monkeys to serve as a promising model for studying anti-inflammatory drugs.


Journal of Applied Physiology | 2011

Bronchoconstriction in nonhuman primates: a species comparison

Sophie Seehase; Marco Schlepütz; Simone Switalla; Kerstin Mätz-Rensing; Franz Josef Kaup; Martina Zöller; Christina Schlumbohm; Eberhard Fuchs; Hans D Lauenstein; Carla Winkler; Anna Rebekka Kuehl; Stefan Uhlig; Armin Braun; Katherina Sewald; Christian Martin

Bronchoconstriction is a characteristic symptom of various chronic obstructive respiratory diseases such as chronic obstructive pulmonary disease and asthma. Precision-cut lung slices (PCLS) are a suitable ex vivo model to study physiological mechanisms of bronchoconstriction in different species. In the present study, we established an ex vivo model of bronchoconstriction in nonhuman primates (NHPs). PCLS prepared from common marmosets, cynomolgus macaques, rhesus macaques, and anubis baboons were stimulated with increasing concentrations of representative bronchoconstrictors: methacholine, histamine, serotonin, leukotriene D₄ (LTD₄), U46619, and endothelin-1. Alterations in the airway caliber were measured and compared with previously published data from rodents, guinea pigs, and humans. Methacholine induced maximal airway constriction, varying between 74 and 88% in all NHP species, whereas serotonin was ineffective. Histamine induced maximal bronchoconstriction of 77 to 90% in rhesus macaques, cynomolgus macaques, and baboons and a lesser constriction of 53% in marmosets. LTD₄ was ineffective in marmosets and rhesus macaques but induced a maximum constriction of 44 to 49% in cynomolgus macaques and baboons. U46619 and endothelin-1 caused airway constriction in all NHP species, with maximum constrictions of 65 to 91% and 70 to 81%, respectively. In conclusion, PCLS from NHPs represent a valuable ex vivo model for studying bronchoconstriction. All NHPs respond to mediators relevant to human airway disorders such as methacholine, histamine, U46619, and endothelin-1 and are insensitive to the rodent mast cell product serotonin. Only PCLS from cynomolgus macaques and baboons, however, responded also to leukotrienes, suggesting that among all compared species, these two NHPs resemble the human airway mechanisms best.


Cellular and Molecular Neurobiology | 2010

Neuronal MHC Class I Molecules are Involved in Excitatory Synaptic Transmission at the Hippocampal Mossy Fiber Synapses of Marmoset Monkeys

Adema Ribic; Mingyue Zhang; Christina Schlumbohm; Kerstin Mätz-Rensing; Barbara Uchanska-Ziegler; Gabriele Flügge; Weiqi Zhang; Lutz Walter; Eberhard Fuchs

Several recent studies suggested a role for neuronal major histocompatibility complex class I (MHCI) molecules in certain forms of synaptic plasticity in the hippocampus of rodents. Here, we report for the first time on the expression pattern and functional properties of MHCI molecules in the hippocampus of a nonhuman primate, the common marmoset monkey (Callithrix jacchus). We detected a presynaptic, mossy fiber-specific localization of MHCI proteins within the marmoset hippocampus. MHCI molecules were present in the large, VGlut1-positive, mossy fiber terminals, which provide input to CA3 pyramidal neurons. Furthermore, whole-cell recordings of CA3 pyramidal neurons in acute hippocampal slices of the common marmoset demonstrated that application of antibodies which specifically block MHCI proteins caused a significant decrease in the frequency, and a transient increase in the amplitude, of spontaneous excitatory postsynaptic currents (sEPSCs) in CA3 pyramidal neurons. These findings add to previous studies on neuronal MHCI molecules by describing their expression and localization in the primate hippocampus and by implicating them in plasticity-related processes at the mossy fiber–CA3 synapses. In addition, our results suggest significant interspecies differences in the localization of neuronal MHCI molecules in the hippocampus of mice and marmosets, as well as in their potential function in these species.


Hippocampus | 2009

A molecular blueprint of gene expression in hippocampal subregions CA1, CA3, and DG is conserved in the brain of the common marmoset

Nicole A. Datson; Maarten C. Morsink; Peter J. Steenbergen; Y. Aubert; Christina Schlumbohm; Eberhard Fuchs; E.R. de Kloet

Recent studies in rodents have shown that there are significant differences in gene expression profiles between the hippocampal subregions CA1, CA3, and DG. These differences in molecular make‐up within the hippocampus most likely underlie the differences in morphology, physiology, and vulnerability to insults that exist between the subregions of the hippocampus and are as such part of the basic molecular architecture of the hippocampus. The aim of this study was to investigate at large scale whether these subregional differences in gene expression are conserved in the hippocampus of a nonhuman primate, the common marmoset. This study is very timely, given the recent development of the first marmoset‐specific DNA microarray, exclusively containing sequences targeting transcripts derived from the marmoset hippocampus. Hippocampal subregions CA1, CA3, and DG were isolated by laser microdissection and RNA was isolated, amplifed, and hybridized to the marmoset‐specific microarray (EUMAMA) containing more than 1,500 transcripts expressed in the adult marmoset hippocampus. Large differences in expression were observed in particular between the DG region and both pyramidal subregions. Moreover, the subregion‐specific patterns of gene expression showed a remarkable conservation with the rodent brain both in terms of individual genes and degree of differential expression. To our knowledge, this is the first study investigating large scale hippocampal gene expression in a nonhuman primate. The obtained expression profiles not only provide novel data on the expression of more than 1,500 transcripts per hippocampal subregion but also are of potential interest to neuroscientists interested in the role of the different subregions in learning and memory in the nonhuman primate brain.


European Neuropsychopharmacology | 2014

Agomelatine in the tree shrew model of depression: Effects on stress-induced nocturnal hyperthermia and hormonal status

Barthel Schmelting; Silke Corbach-Söhle; Susan Kohlhause; Christina Schlumbohm; Gabriele Flügge; Eberhard Fuchs

The antidepressive drug agomelatine combines the properties of an agonist of melatonergic receptors 1 and 2 with an antagonist of the 5-HT2C receptor. We analyzed the effects of agomelatine in psychosocially stressed male tree shrews, an established preclinical model of depression. Tree shrews experienced daily social stress for a period of 5 weeks and were concomitantly treated with different drugs daily for 4 weeks. The effects of agomelatine (40 mg/kg/day) were compared with those of the agonist melatonin (40 mg/kg/day), the inverse 5-HT2C antagonist S32006 (10mg/kg/day), and the SSRI fluoxetine (15 mg/kg/day). Nocturnal core body temperature (CBT) was recorded by telemetry, and urinary norepinephrine and cortisol concentrations were measured. Chronic social stress induced nocturnal hyperthermia. Agomelatine normalized the CBT in the fourth week of the treatment (T4), whereas the other drugs did not significantly counteract the stress-induced hyperthermia. Agomelatine also reversed the stress-induced reduction in locomotor activity. Norepinephrine concentration was elevated by the stress indicating sympathetic hyperactivity, and was normalized in the stressed animals treated with agomelatine or fluoxetine but not in those treated with melatonin or S32006. Cortisol concentration was elevated by stress but returned to basal levels by T4 in all animals, irrespective of the treatment. These observations show that agomelatine has positive effects to counteract stress-induced physiological processes and to restore the normal rhythm of nocturnal CBT. The data underpin the antidepressant properties of agomelatine and are consistent with a distinctive profile compared to its constituent pharmacological components and other conventional agents.


BMC Genomics | 2007

Development of the first marmoset-specific DNA microarray (EUMAMA): a new genetic tool for large-scale expression profiling in a non-human primate.

Nicole A. Datson; Maarten C. Morsink; Srebrena Atanasova; Victor W. Armstrong; Hans Zischler; Christina Schlumbohm; Bas E. Dutilh; Martijn A. Huynen; Brigitte Waegele; Andreas Ruepp; E. Ronald de Kloet; Eberhard Fuchs

BackgroundThe common marmoset monkey (Callithrix jacchus), a small non-endangered New World primate native to eastern Brazil, is becoming increasingly used as a non-human primate model in biomedical research, drug development and safety assessment. In contrast to the growing interest for the marmoset as an animal model, the molecular tools for genetic analysis are extremely limited.ResultsHere we report the development of the first marmoset-specific oligonucleotide microarray (EUMAMA) containing probe sets targeting 1541 different marmoset transcripts expressed in hippocampus. These 1541 transcripts represent a wide variety of different functional gene classes. Hybridisation of the marmoset microarray with labelled RNA from hippocampus, cortex and a panel of 7 different peripheral tissues resulted in high detection rates of 85% in the neuronal tissues and on average 70% in the non-neuronal tissues. The expression profiles of the 2 neuronal tissues, hippocampus and cortex, were highly similar, as indicated by a correlation coefficient of 0.96. Several transcripts with a tissue-specific pattern of expression were identified. Besides the marmoset microarray we have generated 3215 ESTs derived from marmoset hippocampus, which have been annotated and submitted to GenBank [GenBank: EF214838 – EF215447, EH380242 – EH382846].ConclusionWe have generated the first marmoset-specific DNA microarray and demonstrated its use to characterise large-scale gene expression profiles of hippocampus but also of other neuronal and non-neuronal tissues. In addition, we have generated a large collection of ESTs of marmoset origin, which are now available in the public domain. These new tools will facilitate molecular genetic research into this non-human primate animal model.


Journal of Neuroimmunology | 2006

Differential expression of major histocompatibility complex class I molecules in the brain of a New World monkey, the common marmoset (Callithrix jacchus)

Ulrike Rölleke; Gabriele Flügge; Stephanie Plehm; Christina Schlumbohm; Victor W. Armstrong; Ralf Dressel; Barbara Uchanska-Ziegler; Andreas Ziegler; Eberhard Fuchs; Boldizsár Czéh; Lutz Walter

It has been supposed that central nervous neurons do not express MHC class I molecules. However, recent studies clearly demonstrated functional MHC class I expression in the rodent brain. In the present study, we have extended these studies and investigated the presence of MHC class I transcripts and proteins in the brain of a non-human primate species, the common marmoset monkey (Callithrix jacchus). Using in-situ hybridization, we found strong expression of MHC class I transcripts in neocortex, hippocampal formation, substantia nigra and nucleus ruber. In-situ hybridization with emulsion autoradiography demonstrated MHC class I mRNA in distinct pyramidal neurons of cortex and hippocampus, in granule neurons of the dentate gyrus, in dopaminergic neurons of substantia nigra and in motor neurons of nucleus ruber. Immunocytochemistry confirmed MHC class I protein expression in these neurons. Two monoclonal antibodies, MRC-Ox18 and HB115, reacted differentially with MHC class I proteins on neuronal and non-neuronal cells, respectively. Interestingly, in marmoset monkeys that were immunosuppressed with FK506 (tacrolimus), expression of neuronal MHC class I proteins, which could be detected with MRC-Ox18, was either very low (neocortex, nucleus ruber, substantia nigra) or absent (hippocampus). In contrast, class I expression in endothelial cells, which was detected by HB115, was not affected by immunosuppression. Our data show that selected neurons in the brain of a non-human primate express MHC class I molecules and that this expression can be modulated by immunosuppression.


PLOS ONE | 2016

Comparative Analysis of the Effects of Neurotrophic Factors CDNF and GDNF in a Nonhuman Primate Model of Parkinson's Disease

Enrique Garea-Rodriguez; Ave Eesmaa; Päivi Lindholm; Christina Schlumbohm; Jessica König; Birgit Meller; Kerstin Krieglstein; Gunther Helms; Mart Saarma; Eberhard Fuchs

Cerebral dopamine neurotrophic factor (CDNF) belongs to a newly discovered family of evolutionarily conserved neurotrophic factors. We demonstrate for the first time a therapeutic effect of CDNF in a unilateral 6-hydroxydopamine (6-OHDA) lesion model of Parkinson’s disease in marmoset monkeys. Furthermore, we tested the impact of high chronic doses of human recombinant CDNF on unlesioned monkeys and analyzed the amino acid sequence of marmoset CDNF. The severity of 6-OHDA lesions and treatment effects were monitored in vivo using 123I-FP-CIT (DaTSCAN) SPECT. Quantitative analysis of 123I-FP-CIT SPECT showed a significant increase of dopamine transporter binding activity in lesioned animals treated with CDNF. Glial cell line-derived neurotrophic factor (GDNF), a well-characterized and potent neurotrophic factor for dopamine neurons, served as a control in a parallel comparison with CDNF. By contrast with CDNF, only single animals responded to the treatment with GDNF, but no statistical difference was observed in the GDNF group. However, increased numbers of tyrosine hydroxylase immunoreactive neurons, observed within the lesioned caudate nucleus of GDNF-treated animals, indicate a strong bioactive potential of GDNF.

Collaboration


Dive into the Christina Schlumbohm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gunther Helms

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge