Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina Susanne Mullins is active.

Publication


Featured researches published by Christina Susanne Mullins.


Cancer Immunology, Immunotherapy | 2012

Endogenous retrovirus sequences as a novel class of tumor-specific antigens: an example of HERV-H env encoding strong CTL epitopes.

Christina Susanne Mullins

Our genome consists to about 8% of human endogenous retroviral (HERV) sequences. These HERVs have been discussed to be linked to human diseases for decades. Recently, a detailed analysis of a HERV-H sequence located on chromosome Xp22.3 revealed a strong expression in a subset of gastrointestinal cancers whereas expression in normal tissues and in other cancer entities was low. In the present study, we used the reverse immunology approach to test the immunological potential of this HERV-H ORF on Xp22.3. A total of ten peptides displaying HLA-A2.1-binding motifs were selected from the predicted env protein sequence. Stimulation of peripheral T cells with retroviral peptides (RVPs) presented by autologous antigen-presenting cells clearly resulted in sustained proliferation of predominantly CD8+ T cells. High numbers of IFN-γ-secreting T cells were detectable after several weekly stimulations with RVP mixes. Reactivity observed in RVP-Mix–stimulated cultures was attributable to RVP03, RVP09 and to a lower extend to RVP08, suggesting those to be highly immunogenic epitopes. Besides killing of RVP-loaded target cells, up to 40% specific lysis of colorectal carcinoma cell lines endogenously expressing this HERV-H Xp22.3 ORF was achieved. These data demonstrate that human T cells can be sensitized toward HERV peptides and moreover posses a high lytic potential toward HERV-H expressing CRC cells. Additionally, these data hint toward endogenous ENV protein expression followed by proteasomal degradation and presentation in the context of HLA molecules. Finally, our data strengthen the view that HERV-encoded sequences should be considered as a new class of tumor-specific antigens.


PLOS ONE | 2013

Establishment and Characterization of Primary Glioblastoma Cell Lines from Fresh and Frozen Material: A Detailed Comparison

Christina Susanne Mullins; Björn Schneider; Florian Stockhammer; Mathias Krohn; Carl Friedrich Classen

Background Development of clinically relevant tumor model systems for glioblastoma multiforme (GBM) is important for advancement of basic and translational biology. High molecular heterogeneity of GBM tumors is well recognized, forming the rationale for molecular tests required before administration of several of the novel therapeutics rapidly entering the clinics. One model that has gained wide acceptance is the primary cell culture model. The laborious and time consuming process is rewarded with a relative high success rate (about 60%). We here describe and evaluate a very simple cryopreservation procedure for GBM tissue prior to model establishment that will considerably reduce the logistic complexity. Methods Twenty-seven GBM samples collected ad hoc were prepared for primary cell culture freshly from surgery (#1) and after cryopreservation (#2). Results Take rates after cryopreservation (59%) were as satisfactory as from fresh tissue (63%; p = 1.000). We did not observe any relevant molecular or phenotypic differences between cell lines established from fresh or vitally frozen tissue. Further, sensitivity both towards standard chemotherapeutic agents (Temozolomide, BCNU and Vincristine) and novel agents like the receptor tyrosine kinase inhibitor Imatinib did not differ. Conclusions Our simple cryopreservation procedure facilitates collection, long-time storage and propagation (modeling) of clinical GBM specimens (potentially also from distant centers) for basic research, (pre-) clinical studies of novel therapies and individual response prediction.


Oncotarget | 2015

Expression of young HERV-H loci in the course of colorectal carcinoma and correlation with molecular subtypes

Philippe Perot; Christina Susanne Mullins; Magali Naville; Cédric Bressan; Maja Hühns; Michael Gock; Florian Kühn; Jean-Nicolas Volff; Véronique Trillet-Lenoir; Francois Mallet

Background Expression of the human endogenous retrovirus (HERV)-H family has been associated with colorectal carcinomas (CRC), yet no individual HERV-H locus expression has been thoroughly correlated with clinical data. Here, we characterized HERV-H reactivations in clinical CRC samples by integrating expression profiles, molecular patterns and clinical data. Expression of relevant HERV-H sequences was analyzed by qRT-PCR on two well-defined clinical cohorts (n = 139 pairs of tumor and adjacent normal colon tissue) including samples from adenomas (n = 21) and liver metastases (n = 16). Correlations with clinical and molecular data were assessed. Results CRC specific HERV-H sequences were validated and found expressed throughout CRC disease progression. Correlations between HERV-H expression and lymph node invasion of tumor cells (p = 0.0006) as well as microsatellite instable tumors (p < 0.0001) were established. No association with regard to age, tumor localization, grading or common mutations became apparent. Interestingly, CRC expressed elements belonged to specific young HERV-H subfamilies and their 5′ LTR often presented active histone marks. Conclusion These results suggest a functional role of HERV-H sequences in colorectal carcinogenesis. The pronounced connection with microsatellite instability warrants a more detailed investigation. Thus, HERV-H sequences in addition to tumor specific mutations may represent clinically relevant, truly CRC specific markers for diagnostic, prognostic and therapeutic purposes.


Methods of Molecular Biology | 2017

Generation of Xenotransplants from Human Cancer Biopsies to Assess Anti-cancer Activities of HDACi

Christina Susanne Mullins; Stephanie Bock; Mathias Krohn

Human tumor in vivo cancer models raised in immunodeficient mice, the so-called patient-derived xenografts, are increasingly in use in preclinical development and evaluation of novel drug candidates including HDAC inhibitors. Here, we describe the techniques needed to generate novel patient-derived xenografts. The focus lies on vitally frozen tumor biopsies as starting material. First, the preparative steps on the animals, followed by the engraftment procedure itself, the tumor growth surveillance, the explantation procedure, and finally the handling of obtained xenograft tissues are described step by step. This technical description is completed by numerous tips and alternatives designed to allow for an easy adaptation and transfer to other laboratories.


BMC Immunology | 2011

Multidrug-resistance proteins are weak tumor associated antigens for colorectal carcinoma

Christina Susanne Mullins; Sven Eisold; Ernst Klar

BackgroundMultidrug resistance (MDR) is a clinically, highly relevant phenomenon. Under chemotherapy many tumors show an increasing resistance towards the applied substance(s) and to a certain extent also towards other agents. An important molecular cause of this phenomenon is an increased expression of transporter proteins. The functional relationship between high expression levels and chemotherapy resistance makes these MDR and MRP (MDR related protein) proteins to interesting therapeutic targets. We here wanted to systematically analyze, whether these proteins are tumor specific antigens which could be targeted immunologically.ResultsUsing the reverse immunology approach, 30 HLA-A2.1 restricted MDR and MRP derived peptides (MDP) were selected. Stimulated T cell lines grew well and mainly contained activated CD8+ cells. Peptide specificity and HLA-A2.1 restriction were proven in IFN-γ-ELISpot analyses and in cytotoxicity tests against MDP loaded target cells for a total of twelve peptides derived from MDR-1, MDR-3, MRP-1, MRP-2, MRP-3 and MRP-5. Of note, two of these epitopes are shared between MDR-1 and MDR-3 as well as MRP-2 and MRP-3. However, comparably weak cytotoxic activities were additionally observed against HLA-A2.1+ tumor cells even after upregulation of MDR protein expression by in vitro chemotherapy.ConclusionsTaken together, these data demonstrate that human T cells can be sensitised towards MDPs and hence, there is no absolute immunological tolerance. However, our data also hint towards rather low endogenous tumor cell processing and presentation of MDPs in the context of HLA-A2.1 molecules. Consequently, we conclude that MDR and MRP proteins must be considered as weak tumor specific antigens-at least for colorectal carcinoma. Their direct contribution to therapy-failure implies however, that it is worth to further pursue this approach.


Scientific Reports | 2016

Establishment and characterization of HROC69 – a Crohn´s related colonic carcinoma cell line and its matched patient-derived xenograft

Florian Kuehn; Christina Susanne Mullins; Mathias Krohn; Christine Harnack; Robert Ramer; Oliver H. Krämer; Ernst Klar; Maja Huehns

Colitis-associated colorectal cancer (CAC) seems to be a rather unique entity and differs in its genetic alterations, tumour formation capacities, and clinical features from sporadic colorectal carcinoma. Most descriptions about tumour biology of CAC refer to ulcerative colitis; data about Crohn´s colitis related carcinomas are scarce. The majority of patients with Crohn´s disease are under immunosuppression which generates a different environment for tumour growth. We first describe the clinical case of a fast growing CAC in a long-term immunosuppressed patient with Crohn´s disease and successful establishment and characterization of carcinoma cell lines along with their corresponding patient-derived xenograft. Subsequently, these tumor models were molecularly and functionally analysed. Beside numerous chromosomal alterations, mutations in TP53, APC, PTEN and SMAD3 were identified. The cell lines express numerous cancer testis antigens, surface molecules involved in immune evasion but low levels of HLA class I molecules. They show strong invasive but in comparison weak migratory activity. The present work is the first description of patient-derived in vitro and in vivo models for CAC from a Crohn´s disease patient. They might be valuable tools for analysis of genetic and epigenetic alterations, biomarker identification, functional testing, including response prediction, and the development of specific therapeutical strategies.


PLOS ONE | 2016

Generation, Characterization and Application of Antibodies Directed against HERV-H Gag Protein in Colorectal Samples

Christina Susanne Mullins; Maja Hühns; Mathias Krohn; Sven Peters; Valérie Cheynet; Guy Oriol; Michèle Guillotte; Sandrine Ducrot; François Mallet

Introduction A substantial part of the human genome originates from transposable elements, remnants of ancient retroviral infections. Roughly 8% of the human genome consists of about 400,000 LTR elements including human endogenous retrovirus (HERV) sequences. Mainly, the interplay between epigenetic and post-transcriptional mechanisms is thought to silence HERV expression in most physiological contexts. Interestingly, aberrant reactivation of several HERV-H loci appears specific to colorectal carcinoma (CRC). Results The expression of HERV-H Gag proteins (Gag-H) was assessed using novel monoclonal mouse anti Gag-H antibodies. In a flow cytometry screen four antibody clones were tested on a panel of primary CRC cell lines and the most well performing ones were subsequently validated in western blot analysis. Finally, Gag-H protein expression was analyzed by immune histology on cell line cytospins and on clinical samples. There, we found a heterogeneous staining pattern with no background staining of endothelial, stromal and infiltrating immune cells but diffuse staining of the cytoplasm for positive tumor and normal crypt cells of the colonic epithelium. Conclusion Taken together, the Gag-H antibody clone(s) present a valuable tool for staining of cells with colonic origin and thus form the basis for future more detailed investigations. The observed Gag-H protein staining in colonic epithelium crypt cells demands profound analyses of a potential role for Gag-H in the normal physiology of the human gut.


Journal of Cancer Science & Therapy | 2013

A Comprehensive Approach to Patient-individual Glioblastoma Multiforme Model Establishment

Christina Susanne Mullins; Björn Schneider; Anne Lehmann; Florian Stockhammer; Sascha Mann; Cf Classen

Patient-individual tumor models for Glioblastoma Multiforme (GBM) are important not only for basic and translational research but also for the development and improvement of optimal and individualized treatment strategies. The model that has gained widest acceptance is the primary cell culture model. The laborious and time consuming process is rewarded with a relative high initial success rate (about 60%). We here describe and evaluate an extended biobanking methodology to simplify sample collection and model establishment. GBM resection specimen were collected ad hoc, partially prepared fresh for modeling, snap frozen for molecular testing and frozen down vitally. The established models were subject to subsequent detailed characterization in direct comparison to the patients´ tumors. Generally, molecular characteristics such as mutations, gene amplifications and epigenetic alterations were maintained in the models. Immortality, neuronal origin and stem cell characteristics of the cell lines could be demonstrated. Extensive drug sensitivity screens were performed. These well-defined patient-individual models are ideal for establishment of individualized therapy approaches and enable testing of immunological strategies. Our extended biobanking procedure facilitates collection, long-time storage and propagation (modeling) of clinical GBM specimens (potentially also from distant centers) for basic research, (pre-) clinical studying of novel therapies and individual response prediction.


World Journal of Gastroenterology | 2018

Establishment, functional and genetic characterization of a colon derived large cell neuroendocrine carcinoma cell line

Michael Gock; Christina Susanne Mullins; Christine Harnack; Friedrich Prall; Robert Ramer; Anja Göder; Oliver H. Krämer; Ernst Klar

AIM To establish cell line and patient-derived xenograft (PDX) models for neuroendocrine carcinomas (NEC) which is highly desirable for gaining insight into tumor development as well as preclinical research including biomarker testing and drug response prediction. METHODS Cell line establishment was conducted from direct in vitro culturing of colonic NEC tissue (HROC57). A PDX could also successfully be established from vitally frozen tumor samples. Morphological features, invasive and migratory behavior of the HROC57 cells as well as expression of neuroendocrine markers were vastly analyzed. Phenotypic analysis was done by microscopy and multicolor flow cytometry. The extensive molecular-pathological profiling included mutation analysis, assessment of chromosomal and microsatellite instability; and in addition, fingerprinting (i.e., STR analysis) was performed from the cell line in direct comparison to primary patient-derived tissues and the PDX model established. Drug responsiveness was examined for a panel of chemotherapeutics in clinical use for the treatment of solid cancers. RESULTS The established cell line HROC57 showed distinct morphological and molecular features of a poorly differentiated large-cell NEC with KI-67 > 50%. Molecular-pathological analysis revealed a CpG island promoter methylation positive cell line with microsatellite instability being absent. The following mutation profile was observed: KRAS (wt), BRAF (mut). A high sensitivity to etoposide, cisplatin and 5-FU could be demonstrated while it was more resistant towards rapamycin. CONCLUSION We successfully established and characterized a novel patient-derived NEC cell line in parallel to a PDX model as a useful tool for further analysis of the biological characteristics and for development of novel diagnostic and therapeutic options for NEC.


Frontiers in Microbiology | 2018

Murine Endogenous Retroviruses Are Detectable in Patient-Derived Xenografts but Not in Patient-Individual Cell Lines of Human Colorectal Cancer

Stephanie Bock; Christina Susanne Mullins; Ernst Klar; Philippe Pérot; Claudia Maletzki

Endogenous retroviruses are remnants of retroviral infections. In contrast to their human counterparts, murine endogenous retroviruses (mERV) still can synthesize infectious particles and retrotranspose. Xenotransplanted human cells have occasionally been described to be mERV infected. With genetic engineered mice and patient-derived xenografts (PDXs) on the rise as eminent research tools, we here systematically investigated, if different tumor models harbor mERV infections. Relevant mERV candidates were first preselected by next generation sequencing (NGS) analysis of spontaneous lymphomas triggered by colorectal cancer (CRC) PDX tissue. Two primer systems were designed for each of these candidates (AblMLV, EcoMLV, EndoPP, MLV, and preXMRV) and implemented in an quantitative real-time (RT-qPCR) screen using murine tissues (n = 11), PDX-tissues (n = 22), PDX-derived cell lines (n = 13), and patient-derived tumor cell lines (n = 14). The expression levels of mERV varied largely both in the PDX samples and in the mouse tissues. No mERV signal was, however, obtained from cDNA or genomic DNA of CRC cell lines. Expression of EcoMLV was higher in PDX than in murine tissues; for EndoPP it was the opposite. These two were thus further investigated in 40 additional PDX. In addition, four patient-derived cell lines free of any mERV expression were subcutaneously injected into immunodeficient mice. Outgrowing cell-derived xenografts barely expressed EndoPP. In contrast, the expression of EcoMLV was even higher than in surrounding mouse tissues. This expression gradually vanished within few passages of re-cultivated cells. In summary, these results strongly imply that: (i) PDX and murine tissues in general are likely to be contaminated by mERV, (ii) mERV are expressed transiently and at low level in fresh PDX-derived cell cultures, and (iii) mERV integration into the genome of human cells is unlikely or at least a very rare event. Thus, mERVs are stowaways present in murine cells, in PDX tissues and early thereof-derived cell cultures. We conclude that further analysis is needed concerning their impact on results obtained from studies performed with PDX but also with murine tumor models.

Collaboration


Dive into the Christina Susanne Mullins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cf Classen

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge