Christina Thobakgale
University of KwaZulu-Natal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christina Thobakgale.
Nature Medicine | 2007
Photini Kiepiela; Kholiswa Ngumbela; Christina Thobakgale; Dhanwanthie Ramduth; Isobella Honeyborne; Eshia Moodley; Shabashini Reddy; Chantal de Pierres; Zenele Mncube; Nompumelelo Mkhwanazi; Karen Bishop; Mary van der Stok; Kriebashnie Nair; Nasreen Khan; Hayley Crawford; Rebecca Payne; Alasdair Leslie; Julia G. Prado; Andrew J. Prendergast; John Frater; Noel D. McCarthy; Christian Brander; Gerald H. Learn; David C. Nickle; Christine Rousseau; Hoosen Coovadia; James I. Mullins; David Heckerman; Bruce D. Walker; Philip J. R. Goulder
Selection of T-cell vaccine antigens for chronic persistent viral infections has been largely empirical. To define the relationship, at the population level, between the specificity of the cellular immune response and viral control for a relevant human pathogen, we performed a comprehensive analysis of the 160 dominant CD8+ T-cell responses in 578 untreated HIV-infected individuals from KwaZulu-Natal, South Africa. Of the HIV proteins targeted, only Gag-specific responses were associated with lowering viremia. Env-specific and Accessory/Regulatory protein–specific responses were associated with higher viremia. Increasing breadth of Gag-specific responses was associated with decreasing viremia and increasing Env breadth with increasing viremia. Association of the specific CD8+ T-cell response with low viremia was independent of HLA type and unrelated to epitope sequence conservation. These population-based data, suggesting the existence of both effective immune responses and responses lacking demonstrable biological impact in chronic HIV infection, are of relevance to HIV vaccine design and evaluation.
Nature | 2004
Photini Kiepiela; Alasdair Leslie; Isobella Honeyborne; Danni Ramduth; Christina Thobakgale; Senica Chetty; Prinisha Rathnavalu; C. Moore; K. Pfafferott; Louise Hilton; Peter Zimbwa; Sarah Moore; Todd M. Allen; Christian Brander; Marylyn M. Addo; Marcus Altfeld; I. James; S. Mallal; Michael Bunce; Linda Barber; James Szinger; Cheryl L. Day; Paul Klenerman; James I. Mullins; Bette Korber; Hoosen Mohamed Coovadia; Bruce D. Walker; Philip J. R. Goulder
The extreme polymorphism in the human leukocyte antigen (HLA) class I region of the human genome is suggested to provide an advantage in pathogen defence mediated by CD8+ T cells. HLA class I molecules present pathogen-derived peptides on the surface of infected cells for recognition by CD8+ T cells. However, the relative contributions of HLA-A and -B alleles have not been evaluated. We performed a comprehensive analysis of the class I restricted CD8+ T-cell responses against human immunodeficiency virus (HIV-1), immune control of which is dependent upon virus-specific CD8+ T-cell activity. In 375 HIV-1-infected study subjects from southern Africa, a significantly greater number of CD8+ T-cell responses are HLA-B-restricted, compared to HLA-A (2.5-fold; P = 0.0033). Here we show that variation in viral set-point, in absolute CD4 count and, by inference, in rate of disease progression in the cohort, is strongly associated with particular HLA-B but not HLA-A allele expression (P < 0.0001 and P = 0.91, respectively). Moreover, substantially greater selection pressure is imposed on HIV-1 by HLA-B alleles than by HLA-A (4.4-fold, P = 0.0003). These data indicate that the principal focus of HIV-specific activity is at the HLA-B locus. Furthermore, HLA-B gene frequencies in the population are those likely to be most influenced by HIV disease, consistent with the observation that B alleles evolve more rapidly than A alleles. The dominant involvement of HLA-B in influencing HIV disease outcome is of specific relevance to the direction of HIV research and to vaccine design.
Journal of Virology | 2006
Javier Martinez-Picado; Julia G. Prado; Elizabeth E. Fry; K. Pfafferott; Alasdair Leslie; Senica Chetty; Christina Thobakgale; Isobel Honeyborne; Hayley Crawford; Philippa C. Matthews; Tilly Pillay; Christine Rousseau; James I. Mullins; Christian Brander; Bruce D. Walker; David I. Stuart; Photini Kiepiela; Philip J. R. Goulder
ABSTRACT Mutational escape by human immunodeficiency virus (HIV) from cytotoxic T-lymphocyte (CTL) recognition is a major challenge for vaccine design. However, recent studies suggest that CTL escape may carry a sufficient cost to viral replicative capacity to facilitate subsequent immune control of a now attenuated virus. In order to examine how limitations can be imposed on viral escape, the epitope TSTLQEQIGW (TW10 [Gag residues 240 to 249]), presented by two HLA alleles associated with effective control of HIV, HLA-B*57 and -B*5801, was investigated. The in vitro experiments described here demonstrate that the dominant TW10 escape mutation, T242N, reduces viral replicative capacity. Structural analysis reveals that T242 plays a critical role in defining the start point and in stabilizing helix 6 within p24 Gag, ensuring that escape occurs at a significant cost. A very similar role is played by Thr-180, which is also an escape residue, but within a second p24 Gag epitope associated with immune control. Analysis of HIV type 1 gag in 206 B*57/5801-positive subjects reveals three principle alternative TW10-associated variants, and each is strongly linked to concomitant additional variants within p24 Gag, suggesting that functional constraints operate against their occurrence alone. The extreme conservation of p24 Gag and the predictable nature of escape variation resulting from these tight functional constraints indicate that p24 Gag may be a critical immunogen in vaccine design and suggest novel vaccination strategies to limit viral escape options from such epitopes.
Journal of Experimental Medicine | 2005
Alasdair Leslie; Daniel G. Kavanagh; Isobella Honeyborne; K. Pfafferott; Charles Edwards; Tilly Pillay; Louise Hilton; Christina Thobakgale; Danni Ramduth; Rika Draenert; Sylvie Le Gall; Graz Luzzi; Anne Edwards; Christian Brander; Andrew K. Sewell; Sarah Moore; James I. Mullins; C. Moore; S. Mallal; Nina Bhardwaj; Karina Yusim; Rodney E. Phillips; Paul Klenerman; Bette T. Korber; Photini Kiepiela; Bruce D. Walker; Philip J. R. Goulder
Human immunodeficiency virus (HIV)-1 amino acid sequence polymorphisms associated with expression of specific human histocompatibility leukocyte antigen (HLA) class I alleles suggest sites of cytotoxic T lymphocyte (CTL)-mediated selection pressure and immune escape. The associations most frequently observed are between expression of an HLA class I molecule and variation from the consensus sequence. However, a substantial number of sites have been identified in which particular HLA class I allele expression is associated with preservation of the consensus sequence. The mechanism behind this is so far unexplained. The current studies, focusing on two examples of “negatively associated” or apparently preserved epitopes, suggest an explanation for this phenomenon: negative associations can arise as a result of positive selection of an escape mutation, which is stable on transmission and therefore accumulates in the population to the point at which it defines the consensus sequence. Such negative associations may only be in evidence transiently, because the statistical power to detect them diminishes as the mutations accumulate. If an escape variant reaches fixation in the population, the epitope will be lost as a potential target to the immune system. These data help to explain how HIV is evolving at a population level. Understanding the direction of HIV evolution has important implications for vaccine development.
AIDS | 2007
Wendy Mphatswe; Natasha Blanckenberg; Gareth Tudor-Williams; Andrew J. Prendergast; Christina Thobakgale; Nompumelelo Mkhwanazi; Noel D. McCarthy; Bruce D. Walker; Photini Kiepiela; Philip J. R. Goulder
Objectives:To determine the natural history of HIV infection following peripartum single-dose nevirapine (sd-NVP) prophylaxis in a resource-limited country, and to assess implications for antiretroviral therapy (ART) roll-out programmes. Methods:Infants of HIV-infected mothers in KwaZulu-Natal, South Africa, were tested on days 1 and 28 to detect intrauterine (IU) and intrapartum (IP) infection. Infant follow-up included monthly viral load and CD4 cell measurement. ART was initiated at infant CD4 cell% ≤ 20%. Results:In 740 infants born to 719 HIV-infected women, mother-to-child transmission (MTCT) was 10.3% (69% IU, 31% IP). Median viral load was higher in mothers of infants infected IP than IU (279 000 versus 86 600 copies/ml; P = 0.039) and lower in mothers of uninfected infants (median 26 750 copies/ml; P < 0.001). Peak viraemia was higher in infants infected IP than IU (5 160 000 versus 984 000 copies/ml; P < 0.001). Median viral load at birth in IU-infected infants (155 000 copies/ml) fell 1.4 log to 6510 copies/ml by day 5 and was beneath the detection limit using dried blood spot analysis in 38% of infants. CD4 cell% declined rapidly, to ≤ 20% in 70% and ≤ 25% in 85% [current World Health Organization (WHO) criteria for initiating ART] of infants by 6 months. Conclusions:MTCT was reduced by sd-NVP through an effect on IP transmission. Where MTCT occurred despite NVP, two-thirds of transmissions arose IU; IP-infected babies were born to mothers with very high viral load. Disease progression was particularly rapid, 85% infants meeting WHO criteria for ART within 6 months. These findings argue for more effective MTCT-prevention programmes in resource-limited countries.
AIDS | 2008
Andrew J. Prendergast; Wendy Mphatswe; Gareth Tudor-Williams; Mpho Rakgotho; Visva Pillay; Christina Thobakgale; Noel D. McCarthy; Lynn Morris; Bruce D. Walker; Philip J. R. Goulder
Objectives:Infants infected with HIV-1 perinatally despite single-dose nevirapine progress rapidly. Data on treatment outcome in sub-Saharan African infants exposed to single-dose nevirapine are urgently required. This feasibility study addresses efficacy of infant antiretroviral therapy in this setting. Methods:HIV-infected infants in Durban, South Africa, received randomized immediate or deferred (when CD4 cell count reached <20%) four-drug antiretroviral therapy (zidovudine/lamivudine/nelfinavir/nevirapine). Genotyping for non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance was undertaken pre-antiretroviral therapy. Monthly follow-up to 1-year post-antiretroviral therapy included viral load, CD4 cell count and verbal/measured adherence monitoring. Results:All 63 infants were exposed to single-dose nevirapine. Twenty-one out of 51 (39%) infants with baseline genotyping results had NNRTI resistance (most frequently Y181C; 20%). Forty-three infants were randomized to immediate antiretroviral therapy (ART): three withdrew pre-antiretroviral therapy; 36 out of 40 completed 1-year of ART. Twenty infants received deferred ART: 17 reached CD4 cell counts less than 20% (median d99) and 13 out of 17 started antiretroviral therapy in year 1. Verbal and measured adherence was 99% and 95%, respectively. One-year post-ART, 49 out of 49 (100%) infants had a viral load less than 400 copies/ml; 46 out of 49 (94%) had viral load less than 50 copies/ml. Ten infants (20%) required second-line ART due to virological failure or tuberculosis treatment, therefore 39 out of 49 (80%) achieved viral load less than 400 copies/ml by intention-to-treat. Time to viral load less than 50 copies/ml correlated with maternal CD4 cell count (r = −0.42; P = 0.005) and infant pre-ART viral load (r = 0.64; P < 0.001). NNRTI mutations had no significant effect on virological suppression. Infants starting immediate compared with deferred ART had fewer illness episodes (P = 0.003), but no significant difference in virological suppression. Conclusion:Excellent adherence and virological suppression are achievable in infants, despite high-frequency NNRTI mutations and rapid disease progression. Infants remain relatively neglected in roll-out programmes and ART provision must be expanded.
AIDS Research and Human Retroviruses | 2008
Kholiswa Ngumbela; Cheryl L. Day; Zenele Mncube; Kriebashnie Nair; Dhanwanthie Ramduth; Christina Thobakgale; Eshia Moodley; Sharon Reddy; C de Pierres; Nompumelelo Mkhwanazi; Karen Bishop; M. van der Stok; Nasreen Ismail; Isobella Honeyborne; Hayley Crawford; Daniel G. Kavanagh; Christine Rousseau; David C. Nickle; James I. Mullins; David Heckerman; Bette Korber; Hoosen M. Coovadia; Photini Kiepiela; Philip J. R. Goulder; Bruce D. Walker
In HIV-infected persons, certain HLA class I alleles are associated with effective control of viremia, while others are associated with rapid disease progression. Among the most divergent clinical outcomes are the relatively good prognosis in HLA-B*5801 expressing persons and poor prognosis with HLA-B*5802. These two alleles differ by only three amino acids in regions involved in HLA-peptide recognition. This study evaluated a cohort of over 1000 persons with chronic HIV clade C virus infection to determine whether clinical outcome differences associated with B*5801 (n = 93) and B*5802 ( n = 259) expression are associated with differences in HIV-1-specific CD8 (+) T cell responses. The overall breadth and magnitude of HIV-1-specific CD8(+) T cell responses were lower in persons expressing B*5802, and epitope presentation by B*5802 contributed significantly less to the overall response as compared to B*5801-restricted CD8 (+) T cells. Moreover, viral load in B*5802-positive persons was higher and CD4 cell counts lower when this allele contributed to the overall CD8 (+) T cell response, which was detected exclusively through a single epitope in Env. In addition, persons heterozygous for B*5802 compared to persons homozygous for other HLA-B alleles had significantly higher viral loads. Viral sequencing revealed strong selection pressure mediated through B*5801-restricted responses but not through B*5802. These data indicate that minor differences in HLA sequence can have a major impact on epitope recognition, and that selective targeting of Env through HLA-B*5802 is at least ineffectual if not actively adverse in the containment of viremia. These results provide experimental evidence that not all epitope-specific responses contribute to immune containment, a better understanding of which is essential to shed light on mechanisms involved in HIV disease progression.
Journal of Virology | 2007
Christina Thobakgale; Dhanwanthie Ramduth; Sharon Reddy; Nompumelelo Mkhwanazi; Chantal de Pierres; Eshia Moodley; Wendy Mphatswe; Natasha Blanckenberg; Ayanda Cengimbo; Andrew J. Prendergast; Gareth Tudor-Williams; Krista Dong; Prakash Jeena; Gupreet Kindra; Raziya Bobat; Hoosen M. Coovadia; Photini Kiepiela; Bruce D. Walker; Philip J. R. Goulder
ABSTRACT Human immunodeficiency virus (HIV)-infected infants in sub-Saharan Africa typically progress to AIDS or death by 2 years of life in the absence of antiretroviral therapy. This rapid progression to HIV disease has been related to immaturity of the adaptive immune response in infants. We screened 740 infants born to HIV-infected mothers and tracked development and specificity of HIV-specific CD8+ T-cell responses in 63 HIV-infected infants identified using gamma interferon enzyme-linked immunospot assays and intracellular cytokine staining. Forty-four in utero-infected and 19 intrapartum-infected infants were compared to 45 chronically infected children >2 years of age. Seventy percent (14 of 20) in utero-infected infants tested within the first week of life demonstrated HIV-specific CD8+ T-cell responses. Gag, Pol, and Nef were the principally targeted regions in chronic pediatric infection. However, Env dominated the overall response in one-third (12/36) of the acutely infected infants, compared to only 2/45 (4%) of chronically infected children (P = 0.00083). Gag-specific CD4+ T-cell responses were minimal to undetectable in the first 6 months of pediatric infection. These data indicate that failure to control HIV replication in in utero-infected infants is not due to an inability to induce responses but instead suggest secondary failure of adaptive immunity in containing this infection. Moreover, the detection of virus-specific CD8+ T-cell responses in the first days of life in most in utero-infected infants is encouraging for HIV vaccine interventions in infants.
Journal of Virology | 2009
Christina Thobakgale; Andrew J. Prendergast; Hayley Crawford; Nompumelelo Mkhwanazi; Danni Ramduth; Sharon Reddy; Claudia Molina; Zenele Mncube; Alasdair Leslie; Julia G. Prado; Fundi Chonco; Wendy Mphatshwe; Gareth Tudor-Williams; Prakash Jeena; Natasha Blanckenberg; Krista Dong; Photini Kiepiela; Hoosen M. Coovadia; Thumbi Ndung'u; Bruce D. Walker; Philip J. R. Goulder
ABSTRACT A broad Gag-specific CD8+ T-cell response is associated with effective control of adult human immunodeficiency virus (HIV) infection. The association of certain HLA class I molecules, such as HLA-B*57, -B*5801, and -B*8101, with immune control is linked to mutations within Gag epitopes presented by these alleles that allow HIV to evade the immune response but that also reduce viral replicative capacity. Transmission of such viruses containing mutations within Gag epitopes results in lower viral loads in adult recipients. In this study of pediatric infection, we tested the hypothesis that children may tend to progress relatively slowly if either they themselves possess one of the protective HLA-B alleles or the mother possesses one of these alleles, thereby transmitting a low-fitness virus to the child. We analyzed HLA type, CD8+ T-cell responses, and viral sequence changes for 61 mother-child pairs from Durban, South Africa, who were monitored from birth. Slow progression was significantly associated with the mother or child possessing one of the protective HLA-B alleles, and more significantly so when the protective allele was not shared by mother and child (P = 0.007). Slow progressors tended to make CD8+ T-cell responses to Gag epitopes presented by the protective HLA-B alleles, in contrast to progressors expressing the same alleles (P = 0.07; Fishers exact test). Mothers expressing the protective alleles were significantly more likely to transmit escape variants within the Gag epitopes presented by those alleles than mothers not expressing those alleles (75% versus 21%; P = 0.001). Reversion of transmitted escape mutations was observed in all slow-progressing children whose mothers possessed protective HLA-B alleles. These data show that HLA class I alleles influence disease progression in pediatric as well as adult infection, both as a result of the CD8+ T-cell responses generated in the child and through the transmission of low-fitness viruses by the mother.
PLOS ONE | 2009
Danni Ramduth; Cheryl L. Day; Christina Thobakgale; Nompumelelo Mkhwanazi; Chantal de Pierres; Sharon Reddy; Mary van der Stok; Zenele Mncube; Kriebashne Nair; Eshia Moodley; Daniel E. Kaufmann; Hendrik Streeck; Hoosen Coovadia; Photini Kiepiela; Philip J. R. Goulder; Bruce D. Walker
Background A dominance of Gag-specific CD8+ T cell responses is significantly associated with a lower viral load in individuals with chronic, untreated clade C human immunodeficiency virus type 1 (HIV-1) infection. This association has not been investigated in terms of Gag-specific CD4+ T cell responses, nor have clade C HIV-1–specific CD4+ T cell epitopes, likely a vital component of an effective global HIV-1 vaccine, been identified. Methodology/Principal Findings Intracellular cytokine staining was conducted on 373 subjects with chronic, untreated clade C infection to assess interferon-gamma (IFN-γ) responses by CD4+ T cells to pooled Gag peptides and to determine their association with viral load and CD4 count. Gag-specific IFN-γ–producing CD4+ T cell responses were detected in 261/373 (70%) subjects, with the Gag responders having a significantly lower viral load and higher CD4 count than those with no detectable Gag response (p<0.0001 for both parameters). To identify individual peptides targeted by HIV-1–specific CD4+ T cells, separate ELISPOT screening was conducted on CD8-depleted PBMCs from 32 chronically infected untreated subjects, using pools of overlapping peptides that spanned the entire HIV-1 clade C consensus sequence, and reconfirmed by flow cytometry to be CD4+ mediated. The ELISPOT screening identified 33 CD4+ peptides targeted by 18/32 patients (56%), with 27 of the 33 peptides located in the Gag region. Although the breadth of the CD4+ responses correlated inversely with viral load (p = 0.015), the magnitude of the response was not significantly associated with viral load. Conclusions/Significance These data indicate that in chronic untreated clade C HIV-1 infection, IFN-γ–secreting Gag-specific CD4+ T cell responses are immunodominant, directed at multiple distinct epitopes, and associated with viral control.