Christina Vlachou
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christina Vlachou.
international conference on network protocols | 2014
Christina Vlachou; Albert Banchs; Julien Herzen; Patrick Thiran
Power-line communications are becoming a key component in home networking. The dominant MAC protocol for high data-rate power-line communications, IEEE 1901, employs a CSMA/CA mechanism similar to the back off process of 802.11. Existing performance evaluation studies of this protocol assume that the back off processes of the stations are independent (the so-called decoupling assumption). However, in contrast to 802.11, 1901 stations can change their state after sensing the medium busy, which introduces strong coupling between the stations and, as a result, makes existing analyses inaccurate. In this paper, we propose a new performance model for 1901, which does not rely on the decoupling assumption. We prove that our model admits a unique solution. We confirm the accuracy of our model using both test bed experiments and simulations, and we show that it surpasses current models based on the decoupling assumption. Furthermore, we study the trade off between delay and throughput existing with 1901. We show that this protocol can be configured to accommodate different throughput and jitter requirements, and we give systematic guidelines for its configuration.
international symposium on power line communications and its applications | 2013
Christina Vlachou; Julien Herzen; Patrick Thiran
The MAC layer of the IEEE 1901 standard for power line communications employs a CSMA/CA method similar to, but more complex than, this of IEEE 802.11 for wireless communications. The differences between these protocols raise questions such as which one performs better and under what conditions. We study the fairness of the 1901 MAC protocol in single contention domain networks, where all stations hear each other. We examine fairness at the packet level: a MAC layer protocol is fair if all stations share equitably the medium during a fixed time interval. We focus on short-term fairness, that is, over short time intervals. Short-term fairness directly impacts end-user experience, because unfair protocols are susceptible to introduce substantial packet delays. We evaluate short-term fairness with two metrics: Jains fairness index and the number of inter-transmissions. We present test-bed results of both protocols and compare them with simulations. Both simulation and test-bed results indicate that 802.11 is fairer in the short-term when the number of stations N is between 2 and 5. However, simulation results reveal that 1901 is fairer in the short-term for N ≥ 15. Importantly, our test-bed measurements indicate that 1901 unfairness can cause significant additional delay when N = 2. Finally, we confirm these results by showing analytically that 1901 is short-term unfair for N = 2.
measurement and modeling of computer systems | 2014
Christina Vlachou; Albert Banchs; Julien Herzen; Patrick Thiran
We investigate the IEEE 1901 MAC protocol, the dominant protocol for high data rate power-line communications. 1901 employs a CSMA/CA mechanism similar to - but much more complex than - the backoff mechanism of 802.11. Because of this extra complexity, and although this mechanism is the only widely used MAC layer for power-line networks, there are few analytical results on its performance. We propose a model for the 1901 MAC that comes in the form of a single fixed-point equation for the collision probability. We prove that this equation admits a unique solution, and we evaluate the accuracy of our model by using simulations.
conference on emerging network experiment and technology | 2014
Christina Vlachou; Albert Banchs; Julien Herzen; Patrick Thiran
Power-line communications are employed in home networking to provide easy and high-throughput connectivity. IEEE 1901, the MAC protocol for power-line networks, employs a CSMA/CA protocol similar to that of 802.11, but is substantially more complex, which probably explains why little is known about its performance. One of the key differences between the two protocols is that whereas 802.11 only reacts upon collisions, 1901 also reacts upon several consecutive transmissions and thus can potentially achieve better performance by avoiding unnecessary collisions. In this paper, we propose a model for the 1901 MAC. Our analysis reveals that the default configuration of 1901 does not fully exploit its potential and that its performance degrades with the number of stations. We derive analytically the optimal configuration parameters for 1901; this drastically improves throughput and achieves optimal performance without requiring the knowledge of the number of stations in the network. In contrast, to provide a similar performance, 802.11 requires knowing the number of contending stations, which is unfeasible for realistic traffic patterns. Our solution can be readily implemented by vendors, as it only consists in modifying existing MAC parameters. We corroborate our results with testbed measurements, unveiling a significant signaling overhead in 1901 implementations.
IEEE Journal on Selected Areas in Communications | 2016
Christina Vlachou; Albert Banchs; Pablo Salvador; Julien Herzen; Patrick Thiran
Power-line communications are employed in home networking to provide easy and high-throughput connectivity. The IEEE 1901, the MAC protocol for power-line networks, employs a CSMA/CA protocol similar to that of 802.11, but is substantially more complex, which probably explains why little is known about its performance. One of the key differences between the two protocols is that whereas 802.11 only reacts upon collisions, 1901 also reacts upon several consecutive transmissions and thus can potentially achieve better performance by avoiding unnecessary collisions. In this paper, we propose a model for the 1901 MAC. Our analysis reveals that the default configuration of 1901 does not fully exploit its potential and that its performance degrades with the number of stations. Based on analytical reasoning, we derive a configuration for the parameters of 1901 that drastically improves throughput and achieves optimal performance without requiring the knowledge of the number of stations in the network. In contrast, 802.11 requires knowing the number of contending stations to provide a similar performance, which is unfeasible for realistic traffic patterns. We confirm our results and enhancement with testbed measurements, by implementing the 1901 MAC protocol on WiFi hardware.
internet measurement conference | 2015
Christina Vlachou; Sébastien Henri; Patrick Thiran
Power-line communication (PLC) is widely used as it offers high data-rates and forms a network over electrical wiring, an existing and ubiquitous infrastructure. PLC is increasingly being deployed in hybrid networks that combine multiple technologies, the most popular among which is WiFi. However, so far, it is not clear to which extent PLC can boost network performance or how hybrid implementations can exploit to the fullest this technology. We compare the spatial and temporal variations of WiFi and PLC. Despite the potential of PLC and its vast deployment in commercial products, little is known about its performance. To route or load balance traffic in hybrid networks, a solid understanding of PLC and its link metrics is required. We conduct experiments in a testbed of more than 140 links. We introduce link metrics that are crucial for studying PLC and that are required for quality-aware algorithms by recent standardizations of hybrid networks. We explore the spatial and temporal variation of PLC channels, showing that they are highly asymmetric and that link quality and link-metric temporal variability are strongly correlated. Based on our variation study, we propose and validate a capacity estimation technique via a metric that only uses the frame header. We also focus on retransmissions due to channel errors or to contention, a metric related to delay, and examine the sensitivity of metrics to background traffic. Our performance evaluation provides insight into the implementation of hybrid networks; we ease the intricacies of understanding the performance characteristics of the PHY and MAC layers.
IEEE ACM Transactions on Networking | 2017
Christina Vlachou; Albert Banchs; Julien Herzen; Patrick Thiran
Power-line communications (PLC) are becoming a key component in home networking, because they provide easy and high-throughput connectivity. The dominant MAC protocol for high data-rate PLC, the IEEE 1901, employs a CSMA/CA mechanism similar to the backoff process of 802.11. Existing performance evaluation studies of this protocol assume that the backoff processes of the stations are independent (the so-called decoupling assumption). However, in contrast to 802.11, 1901 stations can change their state after sensing the medium busy, which is regulated by the so-called deferral counter. This mechanism introduces strong coupling between the stations and, as a result, makes existing analyses inaccurate. In this paper, we propose a performance model for 1901, which does not rely on the decoupling assumption. We prove that our model admits a unique solution for a wide range of configurations and confirm the accuracy of the model using simulations. Our results show that we outperform current models based on the decoupling assumption. In addition to evaluating the performance in steady state, we further study the transient dynamics of 1901, which is also affected by the deferral counter.
conference on emerging network experiment and technology | 2016
Sébastien Henri; Christina Vlachou; Julien Herzen; Patrick Thiran
Several technologies, such as WiFi, Ethernet and power-line communications (PLC), can be used to build residential and enterprise networks. These technologies often co-exist; most networks use WiFi, and buildings are readily equipped with electrical wires that can offer a capacity up to 1 Gbps with PLC. Yet, current networks do not exploit this rich diversity and often operate far below the available capacity. We design, implement, and evaluate EMPoWER, a system that exploits simultaneously several potentially-interfering mediums. It operates at layer 2.5, between the MAC and IP layers, and combines routing (to find multiple concurrent routes) and congestion control (to efficiently balance traffic across the routes). To optimize resource utilization and robustness, both components exploit the heterogeneous nature of the network. They are fair and efficient, and they operate only within the local area network, without affecting remote Internet hosts. We demonstrate the performance gains of EMPoWER, by simulations and experiments on a 22-node testbed. We show that PLC/WiFi, benefiting from the diversity offered by wireless and electrical mediums, provides significant throughput gains (up to 10x) and improves coverage, compared to multi-channel WiFi.
Archive | 2014
Christina Vlachou; Julien Herzen; Patrick Thiran
IEEE ACM Transactions on Networking | 2018
Sébastien Henri; Christina Vlachou; Patrick Thiran