Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina Yau is active.

Publication


Featured researches published by Christina Yau.


Journal of Clinical Oncology | 2012

Pathologic Complete Response Predicts Recurrence-Free Survival More Effectively by Cancer Subset: Results From the I-SPY 1 TRIAL—CALGB 150007/150012, ACRIN 6657

Laura Esserman; Donald A. Berry; Angela DeMichele; Lisa A. Carey; Sarah E. Davis; Meredith Buxton; C. Hudis; Joe W. Gray; Charles M. Perou; Christina Yau; Chad A. Livasy; Helen Krontiras; Leslie Montgomery; Debasish Tripathy; Constance D. Lehman; Minetta C. Liu; Olufunmilayo I. Olopade; Hope S. Rugo; John T. Carpenter; Lynn G. Dressler; David C. Chhieng; Baljit Singh; Carolyn Mies; Joseph T. Rabban; Yunn-Yi Chen; Dilip Giri; Laura J. van 't Veer; Nola M. Hylton

PURPOSE Neoadjuvant chemotherapy for breast cancer provides critical information about tumor response; how best to leverage this for predicting recurrence-free survival (RFS) is not established. The I-SPY 1 TRIAL (Investigation of Serial Studies to Predict Your Therapeutic Response With Imaging and Molecular Analysis) was a multicenter breast cancer study integrating clinical, imaging, and genomic data to evaluate pathologic response, RFS, and their relationship and predictability based on tumor biomarkers. PATIENTS AND METHODS Eligible patients had tumors ≥ 3 cm and received neoadjuvant chemotherapy. We determined associations between pathologic complete response (pCR; defined as the absence of invasive cancer in breast and nodes) and RFS, overall and within receptor subsets. RESULTS In 221 evaluable patients (median tumor size, 6.0 cm; median age, 49 years; 91% classified as poor risk on the basis of the 70-gene prognosis profile), 41% were hormone receptor (HR) negative, and 31% were human epidermal growth factor receptor 2 (HER2) positive. For 190 patients treated without neoadjuvant trastuzumab, pCR was highest for HR-negative/HER2-positive patients (45%) and lowest for HR-positive/HER2-negative patients (9%). Achieving pCR predicted favorable RFS. For 172 patients treated without trastuzumab, the hazard ratio for RFS of pCR versus no pCR was 0.29 (95% CI, 0.07 to 0.82). pCR was more predictive of RFS by multivariate analysis when subtype was taken into account, and point estimates of hazard ratios within the HR-positive/HER2-negative (hazard ratio, 0.00; 95% CI, 0.00 to 0.93), HR-negative/HER2-negative (hazard ratio, 0.25; 95% CI, 0.04 to 0.97), and HER2-positive (hazard ratio, 0.14; 95% CI, 0.01 to 1.0) subtypes are lower. Ki67 further improved the prediction of pCR within subsets. CONCLUSION In this biologically high-risk group, pCR differs by receptor subset. pCR is more highly predictive of RFS within every established receptor subset than overall, demonstrating that the extent of outcome advantage conferred by pCR is specific to tumor biology.


Nature Reviews Cancer | 2008

Ageing, oxidative stress and cancer: paradigms in parallax

Christopher C. Benz; Christina Yau

Two paradigms central to geroscience research are that aging is associated with increased oxidative stress and increased cancer risk. Therefore, it could be deduced that cancers arising with ageing will show evidence of increased oxidative stress. Recent studies of gene expression in age-controlled breast cancer cases indicate that this deduction is false, posing parallax views of these two paradigms, and highlighting the unanswered question: does ageing cause or simply permit cancer development?


BMC Cancer | 2007

Enhanced NFκB and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer

Yamei Zhou; Christina Yau; Joe W. Gray; Karen Chew; Shanaz H. Dairkee; Dan H. Moore; Urs Eppenberger; Serenella Eppenberger-Castori; Christopher C. Benz

BackgroundSignaling pathways that converge on two different transcription factor complexes, NFκB and AP-1, have been identified in estrogen receptor (ER)-positive breast cancers resistant to the antiestrogen, tamoxifen.MethodsTwo cell line models of tamoxifen-resistant ER-positive breast cancer, MCF7/HER2 and BT474, showing increased AP-1 and NFκB DNA-binding and transcriptional activities, were studied to compare tamoxifen effects on NFκB and AP-1 regulated reporter genes relative to tamoxifen-sensitive MCF7 cells. The model cell lines were treated with the IKK inhibitor parthenolide (PA) or the proteasome inhibitor bortezomib (PS341), alone and in combination with tamoxifen. Expression microarray data available from 54 UCSF node-negative ER-positive breast cancer cases with known clinical outcome were used to search for potential genes signifying upregulated NFκB and AP-1 transcriptional activity in association with tamoxifen resistance. The association of these genes with patient outcome was further evaluated using node-negative ER-positive breast cancer cases identified from three other published data sets (Rotterdam, n = 209; Amsterdam, n = 68; Basel, n = 108), each having different patient age and adjuvant tamoxifen treatment characteristics.ResultsDoses of parthenolide and bortezomib capable of sensitizing the two endocrine resistant breast cancer models to tamoxifen were capable of suppressing NFκB and AP-1 regulated gene expression in combination with tamoxifen and also increased ER recruitment of the transcriptional co-repressor, NCoR. Transcript profiles from the UCSF breast cancer cases revealed three NFκB and AP-1 upregulated genes – cyclin D1, uPA and VEGF – capable of dichotomizing node-negative ER-positive cases into early and late relapsing subsets despite adjuvant tamoxfien therapy and most prognostic for younger age cases. Across the four independent sets of node-negative ER-positive breast cancer cases (UCSF, Rotterdam, Amsterdam, Basel), high expression of all three NFκB and AP-1 upregulated genes was associated with earliest metastatic relapse.ConclusionAltogether, these findings implicate increased NFκB and AP-1 transcriptional responses with tamoxifen resistant breast cancer and early metastatic relapse, especially in younger patients. These findings also suggest that agents capable of preventing NFκB and AP-1 gene activation may prove useful in restoring the endocrine responsiveness of such high-risk ER-positive breast cancers.


The New England Journal of Medicine | 2016

Adaptive Randomization of Veliparib–Carboplatin Treatment in Breast Cancer

Hope S. Rugo; Olufunmilayo I. Olopade; Angela DeMichele; Christina Yau; Laura J. van 't Veer; Meredith Buxton; Michael Hogarth; Nola M. Hylton; Melissa Paoloni; Jane Perlmutter; W. Fraser Symmans; Douglas Yee; A. Jo Chien; Anne M. Wallace; Henry G. Kaplan; Judy C. Boughey; Tufia C. Haddad; Kathy S. Albain; Minetta C. Liu; Claudine Isaacs; Qamar J. Khan; Julie E. Lang; Rebecca K. Viscusi; Lajos Pusztai; Stacy L. Moulder; Stephen Y. Chui; Kathleen A. Kemmer; Anthony Elias; Kirsten K. Edmiston; David M. Euhus

BACKGROUND The genetic and clinical heterogeneity of breast cancer makes the identification of effective therapies challenging. We designed I-SPY 2, a phase 2, multicenter, adaptively randomized trial to screen multiple experimental regimens in combination with standard neoadjuvant chemotherapy for breast cancer. The goal is to match experimental regimens with responding cancer subtypes. We report results for veliparib, a poly(ADP-ribose) polymerase (PARP) inhibitor, combined with carboplatin. METHODS In this ongoing trial, women are eligible for participation if they have stage II or III breast cancer with a tumor 2.5 cm or larger in diameter; cancers are categorized into eight biomarker subtypes on the basis of status with regard to human epidermal growth factor receptor 2 (HER2), hormone receptors, and a 70-gene assay. Patients undergo adaptive randomization within each biomarker subtype to receive regimens that have better performance than the standard therapy. Regimens are evaluated within 10 biomarker signatures (i.e., prospectively defined combinations of biomarker subtypes). Veliparib-carboplatin plus standard therapy was considered for HER2-negative tumors and was therefore evaluated in 3 signatures. The primary end point is pathological complete response. Tumor volume changes measured by magnetic resonance imaging during treatment are used to predict whether a patient will have a pathological complete response. Regimens move on from phase 2 if and when they have a high Bayesian predictive probability of success in a subsequent phase 3 neoadjuvant trial within the biomarker signature in which they performed well. RESULTS With regard to triple-negative breast cancer, veliparib-carboplatin had an 88% predicted probability of success in a phase 3 trial. A total of 72 patients were randomly assigned to receive veliparib-carboplatin, and 44 patients were concurrently assigned to receive control therapy; at the completion of chemotherapy, the estimated rates of pathological complete response in the triple-negative population were 51% (95% Bayesian probability interval [PI], 36 to 66%) in the veliparib-carboplatin group versus 26% (95% PI, 9 to 43%) in the control group. The toxicity of veliparib-carboplatin was greater than that of the control. CONCLUSIONS The process used in our trial showed that veliparib-carboplatin added to standard therapy resulted in higher rates of pathological complete response than standard therapy alone specifically in triple-negative breast cancer. (Funded by the QuantumLeap Healthcare Collaborative and others; I-SPY 2 TRIAL ClinicalTrials.gov number, NCT01042379.).


Breast Cancer Research | 2010

A multigene predictor of metastatic outcome in early stage hormone receptor-negative and triple-negative breast cancer

Christina Yau; Laura Esserman; Dan H. Moore; Fred Waldman; John J. Sninsky; Christopher C. Benz

IntroductionVarious multigene predictors of breast cancer clinical outcome have been commercialized, but proved to be prognostic only for hormone receptor (HR) subsets overexpressing estrogen or progesterone receptors. Hormone receptor negative (HRneg) breast cancers, particularly those lacking HER2/ErbB2 overexpression and known as triple-negative (Tneg) cases, are heterogeneous and generally aggressive breast cancer subsets in need of prognostic subclassification, since most early stage HRneg and Tneg breast cancer patients are cured with conservative treatment yet invariably receive aggressive adjuvant chemotherapy.MethodsAn unbiased search for genes predictive of distant metastatic relapse was undertaken using a training cohort of 199 node-negative, adjuvant treatment naïve HRneg (including 154 Tneg) breast cancer cases curated from three public microarray datasets. Prognostic gene candidates were subsequently validated using a different cohort of 75 node-negative, adjuvant naïve HRneg cases curated from three additional datasets. The HRneg/Tneg gene signature was prognostically compared with eight other previously reported gene signatures, and evaluated for cancer network associations by two commercial pathway analysis programs.ResultsA novel set of 14 prognostic gene candidates was identified as outcome predictors: CXCL13, CLIC5, RGS4, RPS28, RFX7, EXOC7, HAPLN1, ZNF3, SSX3, HRBL, PRRG3, ABO, PRTN3, MATN1. A composite HRneg/Tneg gene signature index proved more accurate than any individual candidate gene or other reported multigene predictors in identifying cases likely to remain free of metastatic relapse. Significant positive correlations between the HRneg/Tneg index and three independent immune-related signatures (STAT1, IFN, and IR) were observed, as were consistent negative associations between the three immune-related signatures and five other proliferation module-containing signatures (MS-14, ONCO-RS, GGI, CSR/wound and NKI-70). Network analysis identified 8 genes within the HRneg/Tneg signature as being functionally linked to immune/inflammatory chemokine regulation.ConclusionsA multigene HRneg/Tneg signature linked to immune/inflammatory cytokine regulation was identified from pooled expression microarray data and shown to be superior to other reported gene signatures in predicting the metastatic outcome of early stage and conservatively managed HRneg and Tneg breast cancer. Further validation of this prognostic signature may lead to new therapeutic insights and spare many newly diagnosed breast cancer patients the need for aggressive adjuvant chemotherapy.


Clinical Cancer Research | 2011

Ribavirin Treatment Effects on Breast Cancers Overexpressing eIF4E, a Biomarker with Prognostic Specificity for Luminal B-Type Breast Cancer

Filippa Pettersson; Christina Yau; Monica C. Dobocan; Biljana Culjkovic-Kraljacic; Hélène Retrouvay; Rachel Puckett; Ludmila M. Flores; Ian E. Krop; Caroline Rousseau; Eftihia Cocolakis; Katherine L. B. Borden; Christopher C. Benz; Wilson H. Miller

Purpose: We have evaluated the eukaryotic translation initiation factor 4E (eIF4E) as a potential biomarker and therapeutic target in breast cancer. eIF4E facilitates nuclear export and translation of specific, growth-stimulatory mRNAs and is frequently overexpressed in cancer. Experimental Design: Breast cancer cells were treated with ribavirin, an inhibitor of eIF4E, and effects on cell proliferation and on known mRNA targets of eIF4E were determined. eIF4E expression was assessed, at the mRNA and protein level, in breast cancer cell lines and in skin biopsies from patients with metastatic disease. Additionally, pooled microarray data from 621 adjuvant untreated, node-negative breast cancers were analyzed for eIF4E expression levels and correlation with distant metastasis–free survival (DMFS), overall and within each intrinsic breast cancer subtype. Results: At clinically relevant concentrations, ribavirin reduced cell proliferation and suppressed clonogenic potential, correlating with reduced mRNA export and protein expression of important eIF4E targets. This effect was suppressed by knockdown of eIF4E. Although eIF4E expression is elevated in all breast cancer cell lines, variability in ribavirin responsiveness was observed, indicating that other factors contribute to an eIF4E-dependent phenotype. Assessment of the prognostic value of high eIF4E mRNA in patient tumors found that significant discrimination between good and poor outcome groups was observed only in luminal B cases, suggesting that a specific molecular profile may predict response to eIF4E-targeted therapy. Conclusions: Inhibition of eIF4E is a potential breast cancer therapeutic strategy that may be especially promising against specific molecular subtypes and in metastatic as well as primary tumors. Clin Cancer Res; 17(9); 2874–84. ©2011 AACR.


Breast Cancer Research | 2007

Aging impacts transcriptomes but not genomes of hormone-dependent breast cancers

Christina Yau; Vita Fedele; Ritu Roydasgupta; Jane Fridlyand; Alan Hubbard; Joe W. Gray; Karen Chew; Shanaz H. Dairkee; Dan H. Moore; Francesco Schittulli; Stefania Tommasi; Angelo Paradiso; Donna G. Albertson; Christopher C. Benz

IntroductionAge is one of the most important risk factors for human malignancies, including breast cancer; in addition, age at diagnosis has been shown to be an independent indicator of breast cancer prognosis. Except for inherited forms of breast cancer, however, there is little genetic or epigenetic understanding of the biological basis linking aging with sporadic breast cancer incidence and its clinical behavior.MethodsDNA and RNA samples from matched estrogen receptor (ER)-positive sporadic breast cancers diagnosed in either younger (age ≤ 45 years) or older (age ≥ 70 years) Caucasian women were analyzed by array comparative genomic hybridization and by expression microarrays. Array comparative genomic hybridization data were analyzed using hierarchical clustering and supervised age cohort comparisons. Expression microarray data were analyzed using hierarchical clustering and gene set enrichment analysis; differential gene expression was also determined by conditional permutation, and an age signature was derived using prediction analysis of microarrays.ResultsHierarchical clustering of genome-wide copy-number changes in 71 ER-positive DNA samples (27 younger women, 44 older women) demonstrated two age-independent genotypes; one with few genomic changes other than 1q gain/16q loss, and another with amplifications and low-level gains/losses. Age cohort comparisons showed no significant differences in total or site-specific genomic breaks and amplicon frequencies. Hierarchical clustering of 5.1 K genes variably expressed in 101 ER-positive RNA samples (53 younger women, 48 older women) identified six transcriptome subtypes with an apparent age bias (P < 0.05). Samples with higher expression of a poor outcome-associated proliferation signature were predominantly (65%) younger cases. Supervised analysis identified cancer-associated genes differentially expressed between the cohorts; with younger cases expressing more cell cycle genes and more than threefold higher levels of the growth factor amphiregulin (AREG), and with older cases expressing higher levels of four different homeobox (HOX) genes in addition to ER (ESR1). An age signature validated against two other independent breast cancer datasets proved to have >80% accuracy in discerning younger from older ER-positive breast cancer cases with characteristic differences in AREG and ESR1 expression.ConclusionThese findings suggest that epigenetic transcriptome changes, more than genotypic variation, account for age-associated differences in sporadic breast cancer incidence and prognosis.


JAMA Oncology | 2015

Rethinking the Standard for Ductal Carcinoma In Situ Treatment

Laura Esserman; Christina Yau

The original goal of mammographic screening was to identify invasive cancers at the earliest stage, because of the superior prognosis of stage I cancers. Prior to the advent of screening, ductal carcinoma in situ (DCIS) made up approximately 3% of breast cancers detected. As we pushed to find smaller and smaller cancers, and targeted calcifications instead of just masses, we began to identify DCIS more frequently. Now DCIS accounts for approximately 20% to 25% of screen-detected breast cancers. The cells that make up DCIS look like invasive cancer both pathologically and molecularly, and therefore the presumption was made that these lesions were the precursors of cancer and that early removal and treatment would reduce cancer incidence and mortality. However, long-term epidemiology studies have demonstrated that the removal of 50 000 to 60 000 DCIS lesions annually has not been accompanied by a reduction in the incidence of invasive breast cancers.1 This is in contrast to the experience with removal of colonic polyps and intraepithelial neoplasia lesions of the cervix, in which the removal of precursor lesions has led to a decrease in the incidence of colon and cervical cancer, respectively.2 We now know that breast cancer encompasses a range of behaviors, from aggressive to indolent; the latter are more likely to surface with screening.3 The analysis of Narod et al4 fuels a growing concern that we should rethink our strategy for the detection and treatment of DCIS. As demonstrated by Narod and colleagues4 in this large observational study of more than 100 000 women with a diagnosis of DCIS, the risk of dying from breast cancer is low. Less than 1% of patients in this 20-year study died of breast cancer (compared with 5% of patients who died of other causes). Using the Kaplan-Meier method, the breast cancer–specific mortality rate is 3.3% at 20 years, not dissimilar to the statistic that the American Cancer Society5 says is the chance that the average woman will die of breast cancer. This is welcome news and suggests that we can embrace evaluation of alternative strategies to surgery and radiation therapy. CALGB 40903,6 a neoadjuvant study of 6 months of letrozole therapy, is an example of a new approach and should open the door to trials of observation and endocrine risk–reducing therapy. If invasive cancer develops after DCIS, the risk of dying of breast cancer increases substantially. Because the biological characteristics of DCIS often predict the type of cancer that may develop in the future, the value of a DCIS diagnosis may be in providing a clue about how to more specifically prevent a potentially lethal breast cancer. A second important insight from the article by Narod et al4 is that there are uncommon cases in which DCIS has a higher risk than has been appreciated. When DCIS is diagnosed before the age of 35 or even 40 years, some of these lesions do pose an increased risk of breast cancer–specific mortality. Ductal carcinoma in situ diagnosed before the age of 40 years is likely different because it would present as a symptomatic event (eg, a mass or bloody nipple discharge), as screening prior to the age of 40 years is rare. Among patients with DCIS, breast cancer–specific mortality is associated with age at diagnosis, ethnicity, and DCIS characteristics such as estrogen receptor status, grade, size (>5 cm), and comedonecrosis. Despite their significance in a multivariable analysis, we note that high-risk characteristics, such as hormone receptor negativity, HER2 positivity, and high grade, often overlap. But only a small minority of patients will have 1 or more of these high-risk characteristics. For young women (<40 years) who present with symptomatic DCIS—approximately 5% of the population—we should be cognizant that this is a different disease than the typical DCIS. As well, African American women (who have higher risk for hormone receptor–negative breast cancer) and women with hormone receptor–negative or HER2-positive DCIS should continue to be treated according to today’s aggressive standards. In total, these groups probably constitute approximately 20% of the population of patients with DCIS. The majority of DCIS is detected in women undergoing screening and who are recalled for biopsy of calcifications. To minimize the risk of overdiagnosis and/or overtreatment, it is time to reassess whether clustered amorphous calcifications should be a target for screening, recall, and biopsy, especially in older women.7 Our focus should be instead on lesions (eg, pleomorphic, linear) that more commonly accompany invasive cancer or are associated with hormone receptor– negative or HER2-positive DCIS. Breast imagers should be reassured by the low mortality rate associated with a DCIS diagnosis. A third key insight is that aggressive treatment (radiation therapy after lumpectomy) of almost all DCIS does not lead to a reduction in breast cancer mortality (eFigure 7 in the Supplement of Narod et al4), confirming the conclusions from the analysis of the NSABP trials.8 Worse, there may be a slight increase in mortality with radiation therapy, especially if the disease is on the left side.9 We can test alternatives, either no radiation therapy or intraoperative radiation therapy,10 and reserve external-beam radiation therapy largely for breast conservation if invasive cancer occurs. Related article page 888 Opinion


Clinical Cancer Research | 2015

The Neoadjuvant Model is Still the Future for Drug Development in Breast Cancer

Angela De Michele; Douglas Yee; Donald A. Berry; Kathy S. Albain; Christopher C. Benz; Judy C. Boughey; Meredith Buxton; Stephen Chia; Amy Jo Chien; Stephen Y. Chui; Amy S. Clark; Kirsten H. Edmiston; Anthony Elias; Andres Forero-Torres; Tufia C. Haddad; Barbara Haley; Paul Haluska; Nola M. Hylton; Claudine Isaacs; Henry G. Kaplan; Larissa A. Korde; Brian Leyland-Jones; Minetta C. Liu; Michelle E. Melisko; Susan Minton; Stacy L. Moulder; Rita Nanda; Olufunmilayo I. Olopade; Melissa Paoloni; John W. Park

The many improvements in breast cancer therapy in recent years have so lowered rates of recurrence that it is now difficult or impossible to conduct adequately powered adjuvant clinical trials. Given the many new drugs and potential synergistic combinations, the neoadjuvant approach has been used to test benefit of drug combinations in clinical trials of primary breast cancer. A recent FDA-led meta-analysis showed that pathologic complete response (pCR) predicts disease-free survival (DFS) within patients who have specific breast cancer subtypes. This meta-analysis motivated the FDAs draft guidance for using pCR as a surrogate endpoint in accelerated drug approval. Using pCR as a registration endpoint was challenged at ASCO 2014 Annual Meeting with the presentation of ALTTO, an adjuvant trial in HER2-positive breast cancer that showed a nonsignificant reduction in DFS hazard rate for adding lapatinib, a HER-family tyrosine kinase inhibitor, to trastuzumab and chemotherapy. This conclusion seemed to be inconsistent with the results of NeoALTTO, a neoadjuvant trial that found a statistical improvement in pCR rate for the identical lapatinib-containing regimen. We address differences in the two trials that may account for discordant conclusions. However, we use the FDA meta-analysis to show that there is no discordance at all between the observed pCR difference in NeoALTTO and the observed HR in ALTTO. This underscores the importance of appropriately modeling the two endpoints when designing clinical trials. The I-SPY 2/3 neoadjuvant trials exemplify this approach. Clin Cancer Res; 21(13); 2911–5. ©2015 AACR.


Breast Cancer Research | 2008

Genes responsive to both oxidant stress and loss of estrogen receptor function identify a poor prognosis group of estrogen receptor positive primary breast cancers

Christina Yau; Christopher C. Benz

IntroductionOxidative stress can modify estrogen receptor (ER) structure and function, including induction of progesterone receptor (PR), altering the biology and clinical behavior of endocrine responsive (ER-positive) breast cancer.MethodsTo investigate the impact of oxidative stress on estrogen/ER-regulated gene expression, RNA was extracted from ER-positive/PR-positive MCF7 breast cancer cells after 72 hours of estrogen deprivation, small-interfering RNA knockdown of ER-α, short-term (8 hours) exposure to various oxidant stresses (diamide, hydrogen peroxide, and menadione), or simultaneous ER-α knockdown and oxidant stress. RNA samples were analyzed by high-throughput expression microarray (Affymetrix), and significance analysis of microarrays was used to define gene signatures responsive to estrogen/ER regulation and oxidative stress. To explore the association of these signatures with breast cancer biology, microarray data were analyzed from 394 ER-positive primary human breast cancers pooled from three independent studies. In particular, an oxidant-sensitive estrogen/ER-responsive gene signature (Ox-E/ER) was correlated with breast cancer clinical parameters and disease-specific patient survival (DSS).ResultsFrom 891 estrogen/ER-regulated probes, a core set of 75 probes (62 unique genes) responsive to all three oxidants were selected (Ox-E/ER signature). Ingenuity pathway analysis of this signature highlighted networks involved in development, cancer, and cell motility, with intersecting nodes at growth factors (platelet-derived growth factor-BB, transforming growth factor-β), a proinflammatory cytokine (tumor necrosis factor), and matrix metalloproteinase-2. Evaluation of the 394 ER-positive primary breast cancers demonstrated that Ox-E/ER index values correlated negatively with PR mRNA levels (rp = -0.2; P = 0.00011) and positively with tumor grade (rp = 0.2; P = 9.741 × e-5), and were significantly higher in ER-positive/PR-negative versus ER-positive/PR-positive breast cancers (t-test, P = 0.0008). Regardless of PR status, the Ox-E/ER index associated with reduced DSS (n = 201; univariate Cox, P = 0.078) and, using the optimized cut-point, separated ER-positive cases into two significantly different DSS groups (log rank, P = 0.0009).ConclusionAn oxidant-sensitive subset of estrogen/ER-responsive breast cancer genes linked to cell growth and invasion pathways was identified and associated with loss of PR and earlier disease-specific mortality, suggesting that oxidative stress contributes to the development of an aggressive subset of primary ER-positive breast cancers.

Collaboration


Dive into the Christina Yau's collaboration.

Top Co-Authors

Avatar

Laura Esserman

University of California

View shared research outputs
Top Co-Authors

Avatar

Christopher C. Benz

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denise M. Wolf

University of California

View shared research outputs
Top Co-Authors

Avatar

Donald A. Berry

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hope S. Rugo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nola M. Hylton

University of California

View shared research outputs
Top Co-Authors

Avatar

Angela DeMichele

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Melissa Paoloni

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge