Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina Yfanti is active.

Publication


Featured researches published by Christina Yfanti.


Diabetologia | 2009

Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase

Vance B. Matthews; Mb Åström; Mhs Chan; Clinton R. Bruce; K. S. Krabbe; Oja Prelovsek; Thorbjorn Akerstrom; Christina Yfanti; Christa Broholm; Ole Hartvig Mortensen; Milena Penkowa; Pernille Hojman; Alaa Zankari; Matthew J. Watt; Helle Bruunsgaard; Bente Klarlund Pedersen; Mark A. Febbraio

It has been brought to our attention following an investigation into the work of Bente Klarlund Pedersen by the Danish Committees for Scientific Dishonesty, that the erratum published in 2012 was insufficient to correct this article. Although the data published in the Diabetologia paper were previously unpublished, the data from the biological material collected from the additional eight healthy men presented in Fig. 1b and c originated from a previous study that was not referenced [1]. In addition, while these eight healthy subjects performed the same type of exercise at the same intensity, the duration was different. The following description of the methodology and Fig. 1 legend correct these oversights. The authors would like to reiterate that these methodological oversights in no way affect either the data presented in the paper or the conclusions reached. The authors also apologise to both the journal and its readership for these oversights.


The Journal of Physiology | 2010

Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle

Søren Nielsen; Camilla Scheele; Christina Yfanti; Thorbjorn Akerstrom; Anders Rinnov Nielsen; Bente Klarlund Pedersen; Matthew J. Laye

Muscle specific miRNAs, myomiRs, have been shown to control muscle development in vitro and are differentially expressed at rest in diabetic skeletal muscle. Therefore, we investigated the expression of these myomiRs, including miR‐1, miR‐133a, miR‐133b and miR‐206 in muscle biopsies from vastus lateralis of healthy young males (n= 10) in relation to a hyperinsulinaemic–euglycaemic clamp as well as acute endurance exercise before and after 12 weeks of endurance training. The subjects increased their endurance capacity, (l min−1) by 17.4% (P < 0.001), and improved insulin sensitivity by 19% (P < 0.01). While myomiR expression remained stable during a hyperinsulinaemic–euglycaemic clamp, an acute bout of exercise increased mir‐1 (P < 0.05) and mir‐133a (P < 0.05) expression before, but not after, training. In resting biopsies, endurance training for 12 weeks decreased basal expression of all four myomiRs (P < 0.05). Interestingly, all myomiRs reverted to their pre‐training expression levels 14 days after ceasing the training programme. Components of major pathways involved in endurance adaptation such as MAPK and TGF‐β were predicted to be targeted by the myomiRs examined. Tested predicted target proteins included Cdc42 and ERK 1/2. Although these proteins were downregulated between post‐training period and 2 weeks of cessation, an inverse correlation between myomiR and target proteins was not found. In conclusion, our data suggest myomiRs respond to physiological stimuli, but their role in regulating human skeletal muscle adaptation remains unknown.


Medicine and Science in Sports and Exercise | 2010

Antioxidant Supplementation Does Not Alter Endurance Training Adaptation

Christina Yfanti; Thorbjorn Akerstrom; Søren Nielsen; Anders Rinnov Nielsen; Rémi Mounier; Ole Hartvig Mortensen; Jens Lykkesfeldt; Adam J. Rose; Christian P. Fischer; Bente Klarlund Pedersen

BACKGROUNDnThere is a considerable commercial market, especially within the sports community, claiming the need for antioxidant supplementation. One argument for antioxidant supplementation in sports is that physical exercise is associated with increased reactive oxygen and nitrogen species (RONS) production, which may cause cell damage. However, RONS production may also activate redox-sensitive signaling pathways and transcription factors, which subsequently, may promote training adaptation.nnnPURPOSEnOur aim was to investigate the effects of combined vitamin C and E supplementation to healthy individuals on different measures of exercise performance after endurance training.nnnMETHODSnUsing a double-blinded placebo-controlled design, moderately trained young men received either oral supplementation with vitamins C and E (n = 11) or placebo (n = 10) before and during 12 wk of supervised, strenuous bicycle exercise training of a frequency of 5 d x wk(-1). Muscle biopsies were obtained before and after training.nnnRESULTSnAfter the training period, maximal oxygen consumption, maximal power output, and workload at lactate threshold increased markedly (P < 0.01) in both groups. Also, glycogen concentration, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase activity in the muscle were significantly higher in response to training (P < 0.01) in both groups. However, there were no differences between the two groups concerning any of the physiological and metabolic variables measured.nnnCONCLUSIONSnOur results suggest that administration of vitamins C and E to individuals with no previous vitamin deficiencies has no effect on physical adaptations to strenuous endurance training.


Diabetes | 2009

Fibroblast Growth Factor-21 Is Induced in Human Skeletal Muscles by Hyperinsulinemia

Pernille Hojman; Maria Pedersen; Anders Rinnov Nielsen; Rikke Krogh-Madsen; Christina Yfanti; Thorbjorn Akerstrom; Søren Nielsen; Bente Klarlund Pedersen

OBJECTIVE Fibroblast growth factor-21 (FGF-21) is a potent metabolic regulator, which in animal models has been shown to improve glucose metabolism and insulin sensitivity. Recently, FGF-21 was shown to be expressed and secreted from murine muscle cells in response to insulin stimulation. RESEARCH DESIGN AND METHODS We studied muscular FGF-21 expression and plasma FGF-21 after acute insulin stimulation in young healthy men during a hyperinsulinemic- euglycemic clamp. Furthermore, we investigated systemic levels and muscle FGF-21 expression in humans with or without insulin resistance and chronic elevated insulin. RESULTS FGF-21 was barely detectable in young healthy men before insulin infusion. After 3 or 4 h of insulin infusion during a hyperinsulinemic-euglycemic clamp, muscular FGF-21 expression increased significantly. Plasma FGF-21 followed the same pattern. In individuals with chronic elevated insulin, muscular FGF-21 expression was associated with hyperinsulinemia in men but not in women. In plasma, hyperinsulinemia and fasting glucose were positively associated with plasma FGF-21 while plasma FGF-21 correlated negatively with HDL cholesterol. No associations between muscle and plasma FGF-21 were found in the individuals with chronic hyperinsulinemia. CONCLUSIONS FGF-21 is expressed in human skeletal muscle in response to insulin stimulation, suggesting that FGF-21 is an insulin-regulated myokine. In support, we found an association between chronic hyperinsulinemia and levels of FGF-21.


PLOS ONE | 2014

The miRNA Plasma Signature in Response to Acute Aerobic Exercise and Endurance Training

Søren Nielsen; Thorbjorn Akerstrom; Anders Rinnov; Christina Yfanti; Camilla Scheele; Bente Klarlund Pedersen; Matthew J. Laye

MiRNAs are potent intracellular posttranscriptional regulators and are also selectively secreted into the circulation in a cell-specific fashion. Global changes in miRNA expression in skeletal muscle in response to endurance exercise training have been reported. Therefore, our aim was to establish the miRNA signature in human plasma in response to acute exercise and chronic endurance training by utilizing a novel methodological approach. RNA was isolated from human plasma collected from young healthy men before and after an acute endurance exercise bout and following 12 weeks of endurance training. Global miRNA (742 miRNAs) measurements were performed as a screening to identify detectable miRNAs in plasma. Using customized qPCR panels we quantified the expression levels of miRNAs detected in the screening procedure (188 miRNAs). We demonstrate a dynamic regulation of circulating miRNA (ci-miRNA) levels following 0 hour (miR-106a, miR-221, miR-30b, miR-151-5p, let-7i, miR-146, miR-652 and miR-151-3p), 1 hour (miR-338-3p, miR-330-3p, miR-223, miR-139-5p and miR-143) and 3 hours (miR-1) after an acute exercise bout (P<0.00032). Where ci-miRNAs were all downregulated immediately after an acute exercise bout (0 hour) the 1 and 3 hour post exercise timepoints were followed by upregulations. In response to chronic training, we identified seven ci-miRNAs with decreased levels in plasma (miR-342-3p, let-7d, miR-766, miR-25, miR-148a, miR-185 and miR-21) and two miRNAs that were present at higher levels after the training period (miR-103 and miR-107) (P<0.00032). In conclusion, acute exercise and chronic endurance training, likely through specific mechanisms unique to each stimulus, robustly modify the miRNA signature of human plasma.


American Journal of Physiology-endocrinology and Metabolism | 2011

Effect of antioxidant supplementation on insulin sensitivity in response to endurance exercise training.

Christina Yfanti; Anders Rinnov Nielsen; Thorbjorn Akerstrom; Søren Loumann Nielsen; Adam J. Rose; Erik A. Richter; Jens Lykkesfeldt; Christian P. Fischer; Bente Klarlund Pedersen

While production of reactive oxygen and nitrogen species (RONS) is associated with some of the beneficial adaptations to regular physical exercise, it is not established whether RONS play a role in the improved insulin-stimulated glucose uptake in skeletal muscle obtained by endurance training. To assess the effect of antioxidant supplementation during endurance training on insulin-stimulated glucose uptake, 21 young healthy (age 29 ± 1 y, BMI 25 ± 3 kg/m(2)) men were randomly assigned to either an antioxidant [AO; 500 mg vitamin C and 400 IU vitamin E (α-tocopherol) daily] or a placebo (PL) group that both underwent a supervised intense endurance-training program 5 times/wk for 12 wk. A 3-h euglycemic-hyperinsulinemic clamp, a maximal oxygen consumption (Vo(2max)) and maximal power output (P(max)) test, and body composition measurements (fat mass, fat-free mass) were performed before and after the training. Muscle biopsies were obtained for determination of the concentration and activity of proteins regulating glucose metabolism. Although plasma levels of vitamin C (P < 0.05) and α-tocopherol (P < 0.05) increased markedly in the AO group, insulin-stimulated glucose uptake increased similarly in both the AO (17.2%, P < 0.05) and the PL (18.9%, P < 0.05) group in response to training. Vo(2max) and P(max) also increased similarly in both groups (time effect, P < 0.0001 for both) as well as protein content of GLUT4, hexokinase II, and total Akt (time effect, P ≤ 0.05 for all). Our results indicate that administration of antioxidants during strenuous endurance training has no effect on the training-induced increase in insulin sensitivity in healthy individuals.


Journal of Applied Physiology | 2012

Role of vitamin C and E supplementation on IL-6 in response to training

Christina Yfanti; Christian P. Fischer; Søren Nielsen; Thorbjorn Akerstrom; Anders Rinnov Nielsen; Aristidis S. Veskoukis; Demetrios Kouretas; Jens Lykkesfeldt; Henriette Pilegaard; Bente Klarlund Pedersen

Vitamin C and E supplementation has been shown to attenuate the acute exercise-induced increase in plasma interleukin-6 (IL-6) concentration. Here, we studied the effect of antioxidant vitamins on the regulation of IL-6 expression in muscle and the circulation in response to acute exercise before and after high-intensity endurance exercise training. Twenty-one young healthy men were allocated into either a vitamin (VT; vitamin C and E, n = 11) or a placebo (PL, n = 10) group. A 1-h acute bicycling exercise trial at 65% of maximal power output was performed before and after 12 wk of progressive endurance exercise training. In response to training, the acute exercise-induced IL-6 response was attenuated in PL (P < 0.02), but not in VT (P = 0.82). However, no clear difference between groups was observed (group × training: P = 0.13). Endurance exercise training also attenuated the acute exercise-induced increase in muscle-IL-6 mRNA in both groups. Oxidative stress, assessed by plasma protein carbonyls concentration, was overall higher in the VT compared with the PL group (group effect: P < 0.005). This was accompanied by a general increase in skeletal muscle mRNA expression of antioxidative enzymes, including catalase, copper-zinc superoxide dismutase, and glutathione peroxidase 1 mRNA expression in the VT group. However, skeletal muscle protein content of catalase, copper-zinc superoxide dismutase, or glutathione peroxidase 1 was not affected by training or supplementation. In conclusion, our results indicate that, although vitamin C and E supplementation may attenuate exercise-induced increases in plasma IL-6 there is no clear additive effect when combined with endurance training.


Endocrine | 2014

Endurance training enhances skeletal muscle interleukin-15 in human male subjects.

Anders Rinnov; Christina Yfanti; Søren Nielsen; Thorbjorn Akerstrom; Lone Peijs; Alaa Zankari; Christian P. Fischer; Bente Klarlund Pedersen

Regular endurance exercise promotes metabolic and oxidative changes in skeletal muscle. Overexpression of interleukin-15 (IL-15) in mice exerts similar metabolic changes in muscle as seen with endurance exercise. Muscular IL-15 production has been shown to increase in mice after weeks of regular endurance running. With the present study we aimed to determine if muscular IL-15 production would increase in human male subjects following 12xa0weeks of endurance training. In two different studies we obtained plasma and muscle biopsies from young healthy subjects performing: (1) 12 weeks of ergometer cycling exercise five times per week with plasma and biopsies before and after the intervention, and (2) 3xa0h of ergometer cycling exercise with plasma and biopsies before and after the exercise bout and well into recovery. We measured changes in plasma IL-15, muscle IL-15 mRNA and IL-15 protein. Twelve weeks of regular endurance training induced a 40xa0% increase in basal skeletal muscle IL-15 protein content (pxa0<xa00.01), but with no changes in either muscle IL-15 mRNA or plasma IL-15 levels. However, an acute bout of 3-h exercise did not show significant changes in muscle IL-15 or plasma IL-15 levels. The induction of muscle IL-15 protein in humans following a regular training period supports previous findings in mice and emphasizes the hypothesis of IL-15 taking part in skeletal muscle adaptation during training.


Medicine and Science in Sports and Exercise | 2011

Protein intake does not increase vastus lateralis muscle protein synthesis during cycling.

Carl J. Hulston; Emil Wolsk; Thomas S. Grøndahl; Christina Yfanti; Gerrit van Hall

PURPOSEnThis study aimed to investigate the effect of protein ingestion on leg protein turnover and vastus lateralis muscle protein synthesis during bicycle exercise and recovery.nnnMETHODSnEight healthy males participated in two experiments in which they ingested either a carbohydrate solution (CHO) providing 0.49 g·kg(-1)·h(-1), or a carbohydrate and protein solution (CHO + P) providing 0.49 and 0.16 g·kg(-1)·h(-1), during 3 h of bicycle exercise and 3 h of recovery. Leg protein turnover was determined from stable isotope infusion (l-[ring-C6]phenylalanine), femoral-arterial venous blood sampling, and blood flow measurements. Muscle protein synthesis was calculated from the incorporation of l-[ring-C6]phenylalanine into protein.nnnRESULTSnConsuming protein during exercise increased leg protein synthesis and decreased net leg protein breakdown; however, protein ingestion did not increase protein synthesis within the highly active vastus lateralis muscle (0.029%·h(-1), ± 0.004%·h(-1), and 0.030%·h(-1), ± 0.003%·h(-1), in CHO and CHO + P, respectively; P = 0.88). In contrast, consuming protein, during exercise and recovery, increased postexercise vastus lateralis muscle protein synthesis by 51% ± 22% (0.070%·h(-1), ± 0.003%·h(-1), and 0.105%·h(-1), ± 0.013%·h(-1), in CHO and CHO+P, respectively; P < 0.01). Furthermore, leg protein net balance was negative during recovery with CHO intake, whereas positive leg protein net balance was achieved with CHO+P intake.nnnCONCLUSIONSnWe conclude that consuming protein during prolonged bicycle exercise does not increase protein synthesis within highly active leg muscles. However, protein intake may have stimulated protein synthesis within less active leg muscles and/or other nonmuscle leg tissue. Finally, protein supplementation, during exercise and recovery, enhanced postexercise muscle protein synthesis and resulted in positive leg protein net balance.


Diabetologia | 2012

Erratum: Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase (Diabetologia DOI: 10.1007/s00125-009-1364-1)

Vance B. Matthews; Mb Åström; M. H. S. Chan; Clinton R. Bruce; K. S. Krabbe; Oja Prelovsek; Thorbjorn Akerstrom; Christina Yfanti; Christa Broholm; Ole Hartvig Mortensen; Milena Penkowa; Pernille Hojman; Alaa Zankari; Matthew J. Watt; Helle Bruunsgaard; Bente Klarlund Pedersen; Mark A. Febbraio

M.-B. Åström :K. S. Krabbe : T. Åkerström :C. Yfanti : C. Broholm :O. H. Mortensen : P. Hojman :A. Zankari : H. Bruunsgaard : B. K. Pedersen (*) The Centre of Inflammation and Metabolism, Department of Infectious Diseases and CMRC, Rigshospitalet—Section 7641, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark e-mail: [email protected]

Collaboration


Dive into the Christina Yfanti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Søren Loumann Nielsen

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alaa Zankari

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge