Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine A. Pratilas is active.

Publication


Featured researches published by Christine A. Pratilas.


Nature | 2006

BRAF mutation predicts sensitivity to MEK inhibition

David B. Solit; Levi A. Garraway; Christine A. Pratilas; Ayana Sawai; Gad Getz; Andrea D. Basso; Qing Ye; Jose Lobo; Yuhong She; Iman Osman; Todd R. Golub; Judith Sebolt-Leopold; William R. Sellers; Neal Rosen

The kinase pathway comprising RAS, RAF, mitogen-activated protein kinase kinase (MEK) and extracellular signal regulated kinase (ERK) is activated in most human tumours, often through gain-of-function mutations of RAS and RAF family members. Using small-molecule inhibitors of MEK and an integrated genetic and pharmacologic analysis, we find that mutation of BRAF is associated with enhanced and selective sensitivity to MEK inhibition when compared to either ‘wild-type’ cells or cells harbouring a RAS mutation. This MEK dependency was observed in BRAF mutant cells regardless of tissue lineage, and correlated with both downregulation of cyclin D1 protein expression and the induction of G1 arrest. Pharmacological MEK inhibition completely abrogated tumour growth in BRAF mutant xenografts, whereas RAS mutant tumours were only partially inhibited. These data suggest an exquisite dependency on MEK activity in BRAF mutant tumours, and offer a rational therapeutic strategy for this genetically defined tumour subtype.


Proceedings of the National Academy of Sciences of the United States of America | 2010

The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner

Eric W. Joseph; Christine A. Pratilas; Poulikos I. Poulikakos; Madhavi Tadi; Weiqing Wang; Barry S. Taylor; Ensar Halilovic; Yogindra Persaud; Feng Xing; Agnes Viale; James H. Tsai; Paul B. Chapman; Gideon Bollag; David B. Solit; Neal Rosen

Tumors with mutant BRAF and some with mutant RAS are dependent upon ERK signaling for proliferation, and their growth is suppressed by MAPK/ERK kinase (MEK) inhibitors. In contrast, tumor cells with human EGF receptor (HER) kinase activation proliferate in a MEK-independent manner. These findings have led to the development of RAF and MEK inhibitors as anticancer agents. Like MEK inhibitors, the RAF inhibitor PLX4032 inhibits the proliferation of BRAFV600E tumor cells but not that of HER kinase-dependent tumors. However, tumors with RAS mutation that are sensitive to MEK inhibition are insensitive to PLX4032. MEK inhibitors inhibit ERK phosphorylation in all normal and tumor cells, whereas PLX4032 inhibits ERK signaling only in tumor cells expressing BRAFV600E. In contrast, the drug activates MEK and ERK phosphorylation in cells with wild-type BRAF. In BRAFV600E tumor cells, MEK and RAF inhibitors affect the expression of a common set of genes. PLX4032 inhibits ERK signaling output in mutant BRAF cells, whereas it transiently activates the expression of these genes in tumor cells with wild-type RAF. Thus, PLX4032 inhibits ERK signaling output in a mutant BRAF-selective manner. These data explain why the drug selectively inhibits the growth of mutant BRAF tumors and suggest that it will not cause toxicity resulting from the inhibition of ERK signaling in normal cells. This selectivity may lead to a broader therapeutic index and help explain the greater antitumor activity observed with this drug than with MEK inhibitors.


Proceedings of the National Academy of Sciences of the United States of America | 2009

V600EBRAF is associated with disabled feedback inhibition of RAF–MEK signaling and elevated transcriptional output of the pathway

Christine A. Pratilas; Barry S. Taylor; Qing Ye; Agnes Viale; Chris Sander; David B. Solit; Neal Rosen

Tumors with mutant BRAF and those with receptor tyrosine kinase (RTK) activation have similar levels of phosphorylated ERK, but only the former depend on ERK signaling for proliferation. The mitogen-activated protein kinase, extracellular signal-regulated kinase kinase (MEK)/ERK-dependent transcriptional output was defined as the genes whose expression changes significantly 8 h after MEK inhibition. In V600EBRAF cells, this output is comprised of 52 genes, including transcription factors that regulate transformation and members of the dual specificity phosphatase and Sprouty gene families, feedback inhibitors of ERK signaling. No such genes were identified in RTK tumor cells, suggesting that ERK pathway signaling output is selectively activated in BRAF mutant tumors. We find that RAF signaling is feedback down-regulated in RTK cells, but is insensitive to this feedback in BRAF mutant tumors. Physiologic feedback inhibition of RAF/MEK signaling down-regulates ERK output in RTK cells; evasion of this feedback in mutant BRAF cells is associated with increased transcriptional output and MEK/ERK-dependent transformation.


Cancer Cell | 2012

Relief of Profound Feedback Inhibition of Mitogenic Signaling by RAF Inhibitors Attenuates Their Activity in BRAFV600E Melanomas

Piro Lito; Christine A. Pratilas; Eric W. Joseph; Madhavi Tadi; Ensar Halilovic; Matthew Zubrowski; Alan Huang; Wai Lin Wong; Margaret K. Callahan; Taha Merghoub; Jedd D. Wolchok; Elisa de Stanchina; Sarat Chandarlapaty; Poulikos I. Poulikakos; James A. Fagin; Neal Rosen

BRAF(V600E) drives tumors by dysregulating ERK signaling. In these tumors, we show that high levels of ERK-dependent negative feedback potently suppress ligand-dependent mitogenic signaling and Ras function. BRAF(V600E) activation is Ras independent and it signals as a RAF-inhibitor-sensitive monomer. RAF inhibitors potently inhibit RAF monomers and ERK signaling, causing relief of ERK-dependent feedback, reactivation of ligand-dependent signal transduction, increased Ras-GTP, and generation of RAF-inhibitor-resistant RAF dimers. This results in a rebound in ERK activity and culminates in a new steady state, wherein ERK signaling is elevated compared to its initial nadir after RAF inhibition. In this state, ERK signaling is RAF inhibitor resistant, and MEK inhibitor sensitive, and combined inhibition results in enhancement of ERK pathway inhibition and antitumor activity.


Cancer Research | 2010

Genomic and Biological Characterization of Exon 4 KRAS Mutations in Human Cancer

Manickam Janakiraman; Efsevia Vakiani; Zhaoshi Zeng; Christine A. Pratilas; Barry S. Taylor; Dhananjay Chitale; Ensar Halilovic; Manda Wilson; Kety Huberman; Julio Ricarte Filho; Yogindra Persaud; Douglas A. Levine; James A. Fagin; Suresh C. Jhanwar; John M. Mariadason; Alex E. Lash; Marc Ladanyi; Leonard Saltz; Adriana Heguy; Philip B. Paty; David B. Solit

Mutations in RAS proteins occur widely in human cancer. Prompted by the confirmation of KRAS mutation as a predictive biomarker of response to epidermal growth factor receptor (EGFR)-targeted therapies, limited clinical testing for RAS pathway mutations has recently been adopted. We performed a multiplatform genomic analysis to characterize, in a nonbiased manner, the biological, biochemical, and prognostic significance of Ras pathway alterations in colorectal tumors and other solid tumor malignancies. Mutations in exon 4 of KRAS were found to occur commonly and to predict for a more favorable clinical outcome in patients with colorectal cancer. Exon 4 KRAS mutations, all of which were identified at amino acid residues K117 and A146, were associated with lower levels of GTP-bound RAS in isogenic models. These same mutations were also often accompanied by conversion to homozygosity and increased gene copy number, in human tumors and tumor cell lines. Models harboring exon 4 KRAS mutations exhibited mitogen-activated protein/extracellular signal-regulated kinase kinase dependence and resistance to EGFR-targeted agents. Our findings suggest that RAS mutation is not a binary variable in tumors, and that the diversity in mutant alleles and variability in gene copy number may also contribute to the heterogeneity of clinical outcomes observed in cancer patients. These results also provide a rationale for broader KRAS testing beyond the most common hotspot alleles in exons 2 and 3.


Cancer Discovery | 2012

Reactivation of ERK Signaling Causes Resistance to EGFR Kinase Inhibitors

Dalia Ercan; Chunxiao Xu; Masahiko Yanagita; Calixte S. Monast; Christine A. Pratilas; Joan Montero; Mohit Butaney; Takeshi Shimamura; Lynette M. Sholl; Elena Ivanova; Madhavi Tadi; Andrew Rogers; Claire E. Repellin; Marzia Capelletti; Ophélia Maertens; Eva M. Goetz; Anthony Letai; Levi A. Garraway; Matthew J. Lazzara; Neal Rosen; Nathanael S. Gray; Kwok-Kin Wong; Pasi A. Jänne

The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors is limited by the development of drug resistance. The irreversible EGFR kinase inhibitor WZ4002 is effective against the most common mechanism of drug resistance mediated by the EGFR T790M mutation. Here, we show, in multiple complementary models, that resistance to WZ4002 develops through aberrant activation of extracellular signal-regulated kinase (ERK) signaling caused by either an amplification of mitogen-activated protein kinase 1 (MAPK1) or by downregulation of negative regulators of ERK signaling. Inhibition of MAP-ERK kinase (MEK) or ERK restores sensitivity to WZ4002 and prevents the emergence of drug resistance. We further identify MAPK1 amplification in an erlotinib-resistant EGFR-mutant non-small cell lung carcinoma patient. In addition, the WZ4002-resistant MAPK1-amplified cells also show an increase both in EGFR internalization and a decrease in sensitivity to cytotoxic chemotherapy. Our findings provide insights into mechanisms of drug resistance to EGFR kinase inhibitors and highlight rational combination therapies that should be evaluated in clinical trials.


Molecular Systems Biology | 2008

Models from experiments: combinatorial drug perturbations of cancer cells

Sven Nelander; Weiqing Wang; Bjoern Nilsson; Qing-Bai She; Christine A. Pratilas; Neal Rosen; Peter Gennemark; Chris Sander

We present a novel method for deriving network models from molecular profiles of perturbed cellular systems. The network models aim to predict quantitative outcomes of combinatorial perturbations, such as drug pair treatments or multiple genetic alterations. Mathematically, we represent the system by a set of nodes, representing molecular concentrations or cellular processes, a perturbation vector and an interaction matrix. After perturbation, the system evolves in time according to differential equations with built‐in nonlinearity, similar to Hopfield networks, capable of representing epistasis and saturation effects. For a particular set of experiments, we derive the interaction matrix by minimizing a composite error function, aiming at accuracy of prediction and simplicity of network structure. To evaluate the predictive potential of the method, we performed 21 drug pair treatment experiments in a human breast cancer cell line (MCF7) with observation of phospho‐proteins and cell cycle markers. The best derived network model rediscovered known interactions and contained interesting predictions. Possible applications include the discovery of regulatory interactions, the design of targeted combination therapies and the engineering of molecular biological networks.


Cancer Research | 2010

Transcriptional Pathway Signatures Predict MEK Addiction and Response to Selumetinib (AZD6244)

Jonathan R. Dry; Sandra Pavey; Christine A. Pratilas; Chris Harbron; Sarah Runswick; Darren Hodgson; Christine M. Chresta; Rose McCormack; Natalie Byrne; Mark Cockerill; Alexander Graham; Garry Beran; Andrew Cassidy; Carolyn Haggerty; Helen J. Brown; Gillian Ellison; Judy Dering; Barry S. Taylor; Mitchell S. Stark; Vanessa F. Bonazzi; Sugandha Ravishankar; Leisl M. Packer; Feng Xing; David B. Solit; Richard S. Finn; Neal Rosen; Nicholas K. Hayward; Tim French; Paul D. Smith

Selumetinib (AZD6244, ARRY-142886) is a selective, non-ATP-competitive inhibitor of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)-1/2. The range of antitumor activity seen preclinically and in patients highlights the importance of identifying determinants of response to this drug. In large tumor cell panels of diverse lineage, we show that MEK inhibitor response does not have an absolute correlation with mutational or phospho-protein markers of BRAF/MEK, RAS, or phosphoinositide 3-kinase (PI3K) activity. We aimed to enhance predictivity by measuring pathway output through coregulated gene networks displaying differential mRNA expression exclusive to resistant cell subsets and correlated to mutational or dynamic pathway activity. We discovered an 18-gene signature enabling measurement of MEK functional output independent of tumor genotype. Where the MEK pathway is activated but the cells remain resistant to selumetinib, we identified a 13-gene signature that implicates the existence of compensatory signaling from RAS effectors other than PI3K. The ability of these signatures to stratify samples according to functional activation of MEK and/or selumetinib sensitivity was shown in multiple independent melanoma, colon, breast, and lung tumor cell lines and in xenograft models. Furthermore, we were able to measure these signatures in fixed archival melanoma tumor samples using a single RT-qPCR-based test and found intergene correlations and associations with genetic markers of pathway activity to be preserved. These signatures offer useful tools for the study of MEK biology and clinical application of MEK inhibitors, and the novel approaches taken may benefit other targeted therapies.


Clinical Cancer Research | 2010

Targeting the Mitogen-Activated Protein Kinase Pathway: Physiological Feedback and Drug Response

Christine A. Pratilas; David B. Solit

Mitogen-activated protein kinase (MAPK) pathway activation is a frequent event in human cancer and is often the result of activating mutations in the BRAF and RAS oncogenes. Targeted inhibitors of BRAF and its downstream effectors are in various stages of preclinical and clinical development. These agents offer the possibility of greater efficacy and less toxicity than current therapies for tumors driven by oncogenic mutations in the MAPK pathway. Early clinical results with the BRAF-selective inhibitor PLX4032 suggest that this strategy will prove successful in a select group of patients whose tumors are driven by V600E BRAF. Relief of physiologic feedback upon pathway inhibition may, however, attenuate drug response and contribute to the development of acquired resistance. An improved understanding of the adaptive response of cancer cells to MAPK pathway inhibition may thus aid in the identification of those patients most likely to respond to targeted pathway inhibitors and provide a rational basis for tailored combination strategies. Clin Cancer Res; 16(13); 3329–34. ©2010 AACR.


Oncogene | 2012

Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring V600E BRAF

Feng Xing; Yogindra Persaud; Christine A. Pratilas; Barry S. Taylor; Manickam Janakiraman; Qing-Bai She; H. Gallardo; Cailian Liu; Taha Merghoub; B. Hefter; Igor Dolgalev; Agnes Viale; Adriana Heguy; E. de Stanchina; David Cobrinik; Gideon Bollag; Jedd D. Wolchok; Alan N. Houghton; David B. Solit

Identifying the spectrum of genetic alterations that cooperate with critical oncogenes to promote transformation provides a foundation for understanding the diversity of clinical phenotypes observed in human cancers. Here, we performed integrated analyses to identify genomic alterations that co-occur with oncogenic BRAF in melanoma and abrogate cellular dependence upon this oncogene. We identified concurrent mutational inactivation of the PTEN and RB1 tumor suppressors as a mechanism for loss of BRAF/MEK dependence in melanomas harboring V600EBRAF mutations. RB1 alterations were mutually exclusive with loss of p16INK4A, suggesting that whereas p16INK4A and RB1 may have overlapping roles in preventing tumor formation, tumors with loss of RB1 exhibit diminished dependence upon BRAF signaling for cell proliferation. These findings provide a genetic basis for the heterogeneity of clinical outcomes in patients treated with targeted inhibitors of the mitogen-activated protein kinase pathway. Our results also suggest a need for comprehensive screening for RB1 and PTEN inactivation in patients treated with RAF and MEK-selective inhibitors to determine whether these alterations are associated with diminished clinical benefit in patients whose cancers harbor mutant BRAF.

Collaboration


Dive into the Christine A. Pratilas's collaboration.

Top Co-Authors

Avatar

Neal Rosen

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

David B. Solit

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Barry S. Taylor

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yogindra Persaud

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Feng Xing

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Manickam Janakiraman

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Eric W. Joseph

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Poulikos I. Poulikakos

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge