Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine A. Raines is active.

Publication


Featured researches published by Christine A. Raines.


Journal of Experimental Botany | 2011

Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency

Martin A. J. Parry; Matthew P. Reynolds; Michael E. Salvucci; Christine A. Raines; P. John Andralojc; Xin-Guang Zhu; G. Dean Price; Anthony G. Condon; Robert T. Furbank

Past increases in yield potential of wheat have largely resulted from improvements in harvest index rather than increased biomass. Further large increases in harvest index are unlikely, but an opportunity exists for increasing productive biomass and harvestable grain. Photosynthetic capacity and efficiency are bottlenecks to raising productivity and there is strong evidence that increasing photosynthesis will increase crop yields provided that other constraints do not become limiting. Even small increases in the rate of net photosynthesis can translate into large increases in biomass and hence yield, since carbon assimilation is integrated over the entire growing season and crop canopy. This review discusses the strategies to increase photosynthesis that are being proposed by the wheat yield consortium in order to increase wheat yields. These include: selection for photosynthetic capacity and efficiency, increasing ear photosynthesis, optimizing canopy photosynthesis, introducing chloroplast CO(2) pumps, increasing RuBP regeneration, improving the thermal stability of Rubisco activase, and replacing wheat Rubisco with that from other species with different kinetic properties.


Plant Physiology | 2005

Increased Sedoheptulose-1,7-Bisphosphatase Activity in Transgenic Tobacco Plants Stimulates Photosynthesis and Growth from an Early Stage in Development

Stephane C. Lefebvre; Tracy Lawson; Oksana V. Zakhleniuk; Julie C. Lloyd; Christine A. Raines

Activity of the Calvin cycle enzyme sedoheptulose-1,7-bisphosphatase (SBPase) was increased by overexpression of an Arabidopsis (Arabidopsis thaliana) cDNA in tobacco (Nicotiana tabacum) plants. In plants with increased SBPase activity, photosynthetic rates were increased, higher levels of Suc and starch accumulated during the photoperiod, and an increase in leaf area and biomass of up to 30% was also evident. Light saturated photosynthesis increased with increasing SBPase activity and analysis of CO2 response curves revealed that this increase in photosynthesis could be attributed to an increase in ribulose 1,5-bisphosphate regenerative capacity. Seedlings with increased SBPase activity had an increased leaf area at the 4 to 5 leaf stage when compared to wild-type plants, and chlorophyll fluorescence imaging of these young plants revealed a higher photosynthetic capacity at the whole plant level. Measurements of photosynthesis, made under growth conditions integrated over the day, showed that mature plants with increased SBPase activity fixed 6% to 12% more carbon than equivalent wild-type leaves, with the young leaves having the highest rates. In this paper, we have shown that photosynthetic capacity per unit area and plant yield can be increased by overexpressing a single native plant enzyme, SBPase, and that this gives an advantage to the growth of these plants from an early phase of vegetative growth. This work has also shown that it is not necessary to bypass the normal regulatory control of SBPase, exerted by conditions in the stroma, to achieve improvements in carbon fixation.


Photosynthesis Research | 2003

The Calvin cycle revisited

Christine A. Raines

The sequence of reactions in the Calvin cycle, and the biochemical characteristics of the enzymes involved, have been known for some time. However, the extent to which any individual enzyme controls the rate of carbon fixation has been a long standing question. Over the last 10 years, antisense transgenic plants have been used as tools to address this and have revealed some unexpected findings about the Calvin cycle. It was shown that under a range of environmental conditions, the level of Rubisco protein had little impact on the control of carbon fixation. In addition, three of the four thioredoxin regulated enzymes, FBPase, PRKase and GAPDH, had negligible control of the cycle. Unexpectedly, non-regulated enzymes catalysing reversible reactions, aldolase and transketolase, both exerted significant control over carbon flux. Furthermore, under a range of growth conditions SBPase was shown to have a significant level of control over the Calvin cycle. These data led to the hypothesis that increasing the amounts of these enzymes may lead to an increase in photosynthetic carbon assimilation. Remarkably, photosynthetic capacity and growth were increased in tobacco plants expressing a bifunctional SBPase/FBPase enzyme. Future work is discussed which will further our understanding of this complex and important pathway, particularly in relation to the mechanisms that regulate and co-ordinate enzyme activity.


Plant Physiology | 2003

Cold tolerance of C4 photosynthesis in Miscanthus x giganteus: adaptation in amounts and sequence of C4 photosynthetic enzymes.

Shawna L. Naidu; Stephen P. Moose; Abdul K. AL-Shoaibi; Christine A. Raines; Stephen P. Long

Field-grown Miscanthus × giganteus maintains high photosynthetic quantum yields and biomass productivity in cool temperate climates. It is related to maize (Zea mays) and uses the same NADP-malic enzyme C4 pathway. This study tests the hypothesis that M. × giganteus, in contrast to maize, forms photosynthetically competent leaves at low temperatures with altered amounts of pyruvate orthophosphate dikinase (PPDK) and Rubisco or altered properties of PPDK. Both species were grown at 25°C/20°C or 14°C/11°C (day/night), and leaf photosynthesis was measured from 5°C to 38°C. Protein and steady-state transcript levels for Rubisco, PPDK, and phosphoenolpyruvate carboxylase were assessed and the sequence of C4-PPDK from M. × giganteus was compared with other C4 species. Low temperature growth had no effect on photosynthesis in M. × giganteus, but decreased rates by 80% at all measurement temperatures in maize. Amounts and expression of phosphoenolpyruvate carboxylase were affected little by growth temperature in either species. However, PPDK and Rubisco large subunit decreased >50% and >30%, respectively, in cold-grown maize, whereas these levels remained unaffected by temperature in M. × giganteus. Differences in protein content in maize were not explained by differences in steady-state transcript levels. Several different M. × giganteus C4-PPDK cDNA sequences were found, but putative translated protein sequences did not show conservation of amino acids contributing to cold stability in Flaveria brownii C4-PPDK. The maintenance of PPDK and Rubisco large subunit amounts in M. × giganteus is consistent with the hypothesis that these proteins are critical to maintaining high rates of C4 photosynthesis at low temperature.


Journal of Phycology | 2004

Environmental effects on exopolymer production by marine benthic diatoms: Dynamics, changes in composition, and pathways of production

Graham J. C. Underwood; Matthew Boulcott; Christine A. Raines; Keith W. Waldron

Marine benthic diatoms excrete large quantities of extracellular polymeric substances (EPS), both as a function of their motility system and as a response to environmental conditions. Diatom EPS consists predominantly of carbohydrate‐rich polymers and is important in the ecology of cells living on marine sediments. Production rates, production pathways, and monosaccharide composition of water‐soluble (colloidal) carbohydrates, EPS, and intracellular storage carbohydrate (glucans) were investigated in the epipelic (mud‐inhabiting) diatoms Cylindrotheca closterium (Ehrenburg), Navicula perminta (Grün.) in Van Heurck, and Amphora exigua Greg. under a range of experimental conditions simulating aspects of the natural environment. Cellular rates of colloidal carbohydrate, EPS, and glucan production were significantly higher during nutrient‐replete compared with nutrient‐limited growth for all three species. The proportion of EPS in the extracellular carbohydrate pool increased significantly (to 44%–69%) as cells became nutrient limited. Cylindrotheca closterium produced two types of EPS differing in sugar composition and production patterns. Nutrient‐replete cells produced a complex EPS containing rhamnose, fucose, xylose, mannose, galactose, glucose, and uronic acids. Nutrient‐limited cells produced an additional EPS containing mannose, galactose, glucose, and uronic acids. Both EPS types were produced under illuminated and darkened conditions. 14C‐labeling revealed immediate production of 14C‐glucan and significant increases in 14C‐EPS between 3 and 4 h after addition of label. The glucan synthesis inhibitor 2,6‐dichlorobenzonitrile significantly reduced 14C‐colloidal carbohydrate and 14C‐EPS. The glucanase inhibitor P‐nitrophenyl β‐d‐glucopyranoside resulted in accumulation of glucan within cells and lowered rates of 14C‐colloidal and 14C‐EPS production. Cycloheximide prevented glucan catabolism, but glucan production and EPS synthesis were unaffected.


Planta | 1997

Reduced sedoheptulose-1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation

Elizabeth Harrison; Nicola M. Willingham; Julie C. Lloyd; Christine A. Raines

Abstract. Transgenic tobacco (Nicotiana tabacum L. cv. Samsun) plants with reduced levels of the Calvin cycle enzyme sedoheptulose-1,7-bisphosphatase (SBPase; EC 3.1.3.37) were produced using an antisense construct in which the expression of a tobacco SBPase cDNA clone was driven by the cauliflower mosaic virus (CaMV) promoter. The reduction in SBPase protein levels observed in the primary transformants correlated with the presence of the antisense construct and lower levels of the endogenous SBPase mRNA. No changes in the amounts of other Calvin cycle enzymes were detected using Western blot analysis. The SBPase antisense plants with less than 20% of wild-type SBPase activity were observed to display a range of phenotypes, including chlorosis and reduced growth rates. Measurements of photosynthesis, using both light-dosage response and CO2 response curves, of T1 plants revealed a reduction in carbon assimilation rates, which was apparent in plants retaining 57% of wild-type SBPase activity. Reductions were also observed in the quantum efficiency of photosystem II. This decrease in photosynthetic capacity was reflected in a reduction in the carbohydrate content of leaves. Analysis of carbohydrate status in fully expanded source leaves showed a shift in carbon allocation away from starch, whilst sucrose levels were maintained in all but the most severely affected plants. Plants with less than 15% of wild-type SBPase activity were found to contain less than 5% of wild-type starch levels. The results of this preliminary analysis indicate that SBPase activity may limit the rate of carbon assimilation.


Planta | 2001

pho3: a phosphorus-deficient mutant of Arabidopsis thaliana (L.) Heynh.

Oksana V. Zakhleniuk; Christine A. Raines; Julie C. Lloyd

Abstract. A novel P-deficient mutant of Arabidopsis thaliana, pho3, was isolated by screening for root acid phosphatase (APase) activity in plants grown under low-P conditions. pho3 had 30% less APase activity in roots than the wild type and, in contrast to wild-type plants, root APase activity did not increase in response to growth in low P. However, shoot APase activity was higher in pho3 than in the wild-type plants. In addition, the pho3 mutant had a P-deficient phenotype, even when grown in P-sufficient conditions. The total P content of 11-d-old pho3 plants, grown in agar media with a plentiful supply of P, was about 25% lower than the wild-type level in the shoot, and about 65% lower in the roots. In the rosette leaves of mature soil-grown pho3 plants the total P content was again reduced, to about 50% of wild-type levels. pho3 exhibited a number of characteristics normally associated with low-P stress, including severely reduced growth, increased anthocyanin content (at least 100-fold greater than the wild type in soil-grown plants) and starch accumulation. The results suggest that the mutant is unable to respond to low internal P levels, and may lack a transporter or a signalling component involved in regulating P nutrition.


Current Opinion in Biotechnology | 2012

Improving yield by exploiting mechanisms underlying natural variation of photosynthesis

Tracy Lawson; David M. Kramer; Christine A. Raines

Increasing photosynthesis in C3 species has been identified as an approach to increase the yield of crop plants. Most of our knowledge of photosynthetic performance has come from studies in which plants were grown in controlled growth conditions but plants in natural environments have to cope with unpredictable and rapidly changing conditions. Plants adapt to the light environment in which they grow and this is demonstrated by the differences in anatomy and morphology of leaves in sun and shade leaves. Superimposed on this are the dynamic responses of plants to rapid changes in the light environment that occur throughout the day. Application of next generation sequencing (NGS), QTL analysis and innovative phenomic screening can provide information to underpin approaches for breeding of higher yielding crop plants.


Plant Ecology | 1993

Analysing the responses of photosynthetic CO2 assimilation to long-term elevation of atmospheric CO2 concentration

S. P. Long; Neil R. Baker; Christine A. Raines

Understanding how photosynthetic capacity acclimatises when plants are grown in an atmosphere of rising CO2 concentrations will be vital to the development of mechanistic models of the response of plant productivity to global environmental change. A limitation to the study of acclimatisation is the small amount of material that may be destructively harvested from long-term studies of the effects of elevation of CO2 concentration. Technological developments in the measurement of gas exchange, fluorescence and absorption spectroscopy, coupled with theoretical developments in the interpretation of measured values now allow detailed analyses of limitations to photosynthesisin vivo. The use of leaf chambers with Ulbricht integrating spheres allows separation of change in the maximum efficiency of energy transduction in the assimilation of CO2 from changes in tissue absorptance. Analysis of the response of CO2 assimilation to intercellular CO2 concentration allows quantitative determination of the limitation imposed by stomata, carboxylation efficiency, and the rate of regeneration of ribulose 1:5 bisphosphate. Chlorophyll fluorescence provides a rapid method for detecting photoinhibition in heterogeneously illuminated leaves within canopies in the field. Modulated fluorescence and absorption spectroscopy allow parallel measurements of the efficiency of light utilisation in electron transport through photosystems I and IIin situ.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Thioredoxin-mediated reversible dissociation of a stromal multiprotein complex in response to changes in light availability

Thomas P. Howard; Metodi V. Metodiev; Julie C. Lloyd; Christine A. Raines

A Calvin cycle multiprotein complex including phosphoribulokinase (PRK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and a small protein, CP12, has previously been identified. In this article, we have studied this complex in leaves and have shown that dissociation and reassociation of the PRK/GAPDH/CP12 complex occurs in a time frame of minutes, allowing for rapid regulation of enzyme activity. Furthermore, we have shown that the extent of formation and dissociation of the PRK/GAPDH/CP12 complex correlates with the quantity of light. These data provide evidence linking the status of this complex with the rapid and subtle regulation of GAPDH and PRK activities in response to fluctuations in light availability. We have also demonstrated that dissociation of this complex depends on electron transport chain activity and that the major factor involved in the dissociation of the pea complex was thioredoxin f. We show here that both PRK and GAPDH are present in the reduced form in leaves in the dark, but are inactive, demonstrating the role of the PRK/GAPDH/CP12 complex in deactivating these enzymes in response to reductions in light intensity. Based on our data, we propose a model for thioredoxin f-mediated activation of PRK and GAPDH by two mechanisms: directly through reduction of disulfide bonds within these enzymes and indirectly by mediating the breakdown of the complex in response to changes in light intensity.

Collaboration


Dive into the Christine A. Raines's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge