Christine Achilleos
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christine Achilleos.
Journal of Agricultural and Food Chemistry | 2012
Génica Lawrence; Solange Buchin; Christine Achilleos; Florence Bérodier; Chantal Septier; Philippe Courcoux; Christian Salles
Reducing the sodium content in foods is complex because of their multidimensional sensory characteristics and the multifunctionality of sodium chloride. The aim of this study was to elucidate how food composition may influence in-mouth sodium release and saltiness perception. Lipoprotein matrices (LPM) were produced using milk constituents and characterized by means of rheological measurements, texture, and taste sensory profiles. Texture and taste perceptions were affected differently by variations in the salt level, dry matter, and fat contents. Composition and textural changes also modified temporal sodium release and saltiness perception recorded in five subjects, but the effects varied as a function of the salt content. The water content mainly appeared to influence the amount of sodium released, whereas saltiness perception was mainly related to fat content. Elasticity, coating, and granularity were found to be correlated with temporal sodium release and/or saltiness parameters.
Food Chemistry | 2013
Lauriane Boisard; Isabelle Andriot; Christine Arnould; Christine Achilleos; Christian Salles; Elisabeth Guichard
The mobility and release of sodium ions were assessed in model cheeses with three different lipid/protein ratios, with or without added NaCl. The rheological properties of the cheeses were analysed using uniaxial compression tests. Microstructure was characterised by confocal laser scanning microscopy. (23)Na nuclear magnetic resonance (NMR) spectroscopy was used to study the molecular mobility of sodium ions in model cheeses through measurements of the relaxation and creation times. Greater mobility was observed in cheeses containing a lower protein content and with added NaCl. The kinetics of sodium release from the cheese to an aqueous phase was correlated with the mobility of sodium ions. The highest rates of sodium release were observed with a lower protein content and with added NaCl. The water/cheese partition coefficients of sodium increased when NaCl was added or the protein content was higher. The study highlighted the effect of model cheese characteristics on molecular and macroscopic behaviours of sodium.
Food Microbiology | 2013
Christine Achilleos; Françoise Berthier
The first objective of this work was to develop real-time quantitative PCR (qPCR) assays to quantify two species of mesophilic lactic acid bacteria technologically active in food fermentation, including cheese making: Lactococcus lactis and Lactobacillus paracasei. The second objective was to compare qPCR and plate counts of these two species in cheese samples. Newly designed primers efficiently amplified a region of the tuf gene from the target species. Sixty-three DNA samples from twenty different bacterial species, phylogenetically related or commonly found in raw milk and dairy products, were selected as positive and negative controls. Target DNA was successfully amplified showing a single peak on the amplicon melting curve; non-target DNA was not amplified. Quantification was linear over 5 log units (R(2) > 0.990), down to 22 gene copies/μL per well for Lc. lactis and 73 gene copies/μL per well for Lb. paracasei. qPCR efficiency ranged from 82.9% to 93.7% for Lc. lactis and from 81.1% to 99.5% for Lb. paracasei. At two stages of growth, Lc. lactis was quantified in 12 soft cheeses and Lb. paracasei in 24 hard cooked cheeses. qPCR proved to be useful for quantifying Lc. lactis, but not Lb. paracasei.
Journal of Agricultural and Food Chemistry | 2012
Génica Lawrence; Chantal Septier; Christine Achilleos; Philippe Courcoux; Christian Salles
This study aimed to investigate the relationships between sodium release, saltiness, and oral parameters during the eating of lipoprotein matrices (LPM). Sodium release and saltiness relative to 10 LPM were recorded during normal mastication by five subjects with differing oral parameters (chewing efficiency and salivary flow rate). The LPM samples varied in composition (dry matter, fat, salt, and pH levels) and represented a broad range of hardness. Mastication was recorded using electromyography simultaneously with sensory assessment. Differences in chewing behavior could explain most of the variability in sodium release and saltiness among subjects. Subjects with a higher chewing force and lower salivary flow rate experienced higher levels of sodium release and saltiness. In terms of the LPM, sodium release and saltiness were affected by either chewing behavior or food composition.
Toxicology in Vitro | 2009
Christine Achilleos; M. Tailhardat; Pascal Courtellemont; Béatrice Le Varlet; Didier Dupont
Non-animal testing methods are a current challenge in terms of the assessment of skin sensitization potential for new chemicals. Our objective was to investigate a surface plasmon resonance (SPR) biosensor to screen allergens against nucleophilic amino acids (cysteine, lysine and histidine) in a direct binding assay. Amino acids were immobilized on the sensor surface and exposed to different skin allergens (chemicals and fragrances) with varying sensitizing potential. Cysteine was found to be more reactive than lysine while histidine showed the lowest reactivity. The interactions observed were different depending on the allergen/amino acids involved. It appeared that weak allergens could quickly dissociate from the ligand, whereas strong and extreme allergens remained bound to the amino acids. The SPR report points allowed a good discrimination of the tested allergens. With this technology, we can observe low energy bindings and get information on the stability of the hapten/amino acid complex which seem relevant for the determination of skin sensitization potential. This prospective experiment showed the potential of real-time SPR to generate specific report points to refine the skin sensitization allergen assessment.
Journal of Agricultural and Food Chemistry | 2015
Odile Rolet-Repecaud; Arnould C; Didier Dupont; Gavoye S; Beuvier E; Christine Achilleos
Chymosin is the major enzyme of natural rennet, traditionally used in cheese making for its high milk-clotting activity. For technical reasons, an accurate characterization of rennet should include its total clotting activity and also its enzymatic composition. Monoclonal antibodies specific to chymosin were obtained from mice immunized with purified bovine chymosin, and an inhibition enzyme-linked immunosorbent assay (ELISA) was developed for the quantification of chymosin in solution. No cross-reactivity was observed with other milk-clotting enzymes commonly used in cheese making. The limit of detection and limit of quantification were 125 and 400 ng/mL, respectively. The values of precision within and among runs were 7.23 and 7.39%, respectively, and satisfying recovery, from 92 to 119%, was found for spiked samples. The inhibition ELISA was successfully applied to commercial rennets, and the results were consistent with those obtained using the standard chromatographic method (IDF 110: A, 1987).
Journal of Dairy Research | 1999
Solange Buchin; Bruno Martin; Didier Dupont; André Bornard; Christine Achilleos
Lait | 2001
Erick Casalta; Yolande Noël; Dominique Le Bars; Christophe Carré; Christine Achilleos; Marie-Xavière Maroselli
Surface & Coatings Technology | 2008
Guillaume Herlem; Olivier Segut; Alexandros Antoniou; Christine Achilleos; Didier Dupont; Virginie Blondeau-Patissier; Tijani Gharbi
Lwt - Food Science and Technology | 2013
Odile Rolet-Repecaud; Françoise Berthier; Eric Beuvier; Stéphane Gavoye; Eric Notz; Sébastien Roustel; Valérie Gagnaire; Christine Achilleos