Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Akfur is active.

Publication


Featured researches published by Christine Akfur.


Small | 2011

Polymorph‐ and Size‐Dependent Uptake and Toxicity of TiO2 Nanoparticles in Living Lung Epithelial Cells

Per Ola Andersson; Christian Lejon; Barbro Ekstrand-Hammarström; Christine Akfur; Linnea Ahlinder; Anders Bucht; Lars Österlund

The cellular uptake and distribution of five types of well-characterized anatase and rutile TiO(2) nanoparticles (NPs) in A549 lung epithelial cells is reported. Static light scattering (SLS), in-vitro Raman microspectroscopy (μ-Raman) and transmission electron spectroscopy (TEM) reveal an intimate correlation between the intrinsic physicochemical properties of the NPs, particle agglomeration, and cellular NP uptake. It is shown that μ-Raman facilitates chemical-, polymorph-, and size-specific discrimination of endosomal-particle cell uptake and the retention of particles in the vicinity of organelles, including the cell nucleus, which quantitatively correlates with TEM and SLS data. Depth-profiling μ-Raman coupled with hyperspectral data analysis confirms the location of the NPs in the cells and shows that the NPs induce modifications of the biological matrix. NP uptake is found to be kinetically activated and strongly dependent on the hard agglomeration size-not the primary particle size-which quantitatively agrees with the measured intracellular oxidative stress. Pro-inflammatory responses are also found to be sensitive to primary particle size.


Nanotoxicology | 2012

Human primary bronchial epithelial cells respond differently to titanium dioxide nanoparticles than the lung epithelial cell lines A549 and BEAS-2B

Barbro Ekstrand-Hammarström; Christine Akfur; Per Ola Andersson; Christian Lejon; Lars Österlund; Anders Bucht

Abstract We have compared the cellular uptake and responses of five preparations of nanocrystalline titanium dioxide (TiO2) between normal human bronchial epithelial (NHBE) cells and epithelial cell lines (A549 and BEAS-2B). The P25 nanoparticles, containing both anatase and rutile modifications, induced reactive oxygen species (ROS) and secretion of the neutrophil chemoattractant IL-8 in all three cell types used. Pure anatase and rutile particles provoked differential IL-8 response in A549 and no response in BEAS-2B cells despite similar formation of ROS. The pure TiO2 modifications also provoked release of the inflammatory mediators: IL-6, G-CSF and VEGF, in NHBE cells but not in the two cell lines. We conclude that the responsiveness of lung epithelial cells is strongly dependent on both the physicochemical properties of TiO2 nanoparticles and the type of responder cells. The differential pro-inflammatory responsiveness of primary lung epithelial cells compared with immortalized cell lines should be considered in the assessment of adverse reactions to inhaled nanoparticles.


Toxicology | 2009

Reactivation of tabun-hAChE investigated by structurally analogous oximes and mutagenesis

Elisabet Artursson; Christine Akfur; Andreas Hörnberg; Franz Worek; Fredrik Ekström

The nerve agent tabun inhibits the essential enzyme acetylcholinesterase (AChE) by a rapid phosphoramidation of the catalytic serine residue. Oximes, such as K027 and HLö-7, can reactivate tabun-inhibited human AChE (tabun-hAChE) whereas the activity of their close structural analogue HI-6 is notably low. To investigate HI-6, K027 and HLö-7, residues lining the active-site gorge of hAChE were substituted and the effects on kinetic parameters for reactivation were determined. None of the mutants (Asp74Asn, Asp74Glu, Tyr124Phe, Tyr337Ala, Tyr337Phe, Phe338Val and Tyr341Ala) were able to facilitate HI-6-mediated reactivation of tabun-hAChE. In contrast, Tyr124Phe and Tyr337Phe induce a 2-2.5-fold enhancement of the bimolecular rate constant for K027 and HLö-7. The largest effects on the dissociation constant (3.5-fold increase) and rate constant (20-fold decrease) were observed for Tyr341Ala and Asp74Asn, respectively. These findings demonstrate the importance of residues located distant from the conjugate during the reactivation of tabun-hAChE.


Biochemical Pharmacology | 2013

Catalytic-Site Conformational Equilibrium in Nerve-Agent Adducts of Acetylcholinesterase; Possible Implications for the Hi-6 Antidote Substrate Specificity.

Elisabet Artursson; Per Ola Andersson; Christine Akfur; Anna Linusson; Susanne Börjegren; Fredrik Ekström

Nerve agents such as tabun, cyclosarin and Russian VX inhibit the essential enzyme acetylcholinesterase (AChE) by organophosphorylating the catalytic serine residue. Nucleophiles, such as oximes, are used as antidotes as they can reactivate and restore the function of the inhibited enzyme. The oxime HI-6 shows a notably low activity on tabun adducts but can effectively reactivate adducts of cyclosarin and Russian VX. To examine the structural basis for the pronounced substrate specificity of HI-6, we determined the binary crystal structures of Mus musculus AChE (mAChE) conjugated by cyclosarin and Russian VX and found a conformational mobility of the side chains of Phe338 and His447. The interaction between HI-6 and tabun-adducts of AChE were subsequently investigated using a combination of time resolved fluorescence spectroscopy and X-ray crystallography. Our findings show that HI-6 binds to tabun inhibited Homo sapiens AChE (hAChE) with an IC50 value of 300μM and suggest that the reactive nucleophilic moiety of HI-6 is excluded from the phosphorus atom of tabun. We propose that a conformational mobility of the side-chains of Phe338 and His447 is a common feature in nerve-agent adducts of AChE. We also suggest that the conformational mobility allow HI-6 to reactivate conjugates of cyclosarin and Russian VX while a reduced mobility in tabun conjugated AChE results in steric hindrance that prevents efficient reactivation.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Structure of a prereaction complex between the nerve agent sarin, its biological target acetylcholinesterase, and the antidote HI-6

Anders Allgardsson; Lotta Berg; Christine Akfur; Andreas Hörnberg; Franz Worek; Anna Linusson; Fredrik Ekström

Significance Enzymatic reactions can be difficult to study using X-ray crystallography, because conformations and reacting species are temporally and spatially averaged, and many reactions proceed to completion before intermediates can be trapped. Here, we describe the combined use of diffusion trap cryocrystallography, density functional theory calculations, and kinetic measurements to investigate the reactivation of the essential cholinergic enzyme acetylcholinesterase by the nerve agent antidote HI-6 after covalent inhibition by the nerve agent sarin. We have determined prereaction conformations of HI-6 and propose that the reactivating cleavage of the enzyme–sarin bond is preceded by a change in the sarin adduct’s binding pose. The structures presented in this work will facilitate additional mechanistic analysis and the development of novel antidotes. Organophosphorus nerve agents interfere with cholinergic signaling by covalently binding to the active site of the enzyme acetylcholinesterase (AChE). This inhibition causes an accumulation of the neurotransmitter acetylcholine, potentially leading to overstimulation of the nervous system and death. Current treatments include the use of antidotes that promote the release of functional AChE by an unknown reactivation mechanism. We have used diffusion trap cryocrystallography and density functional theory (DFT) calculations to determine and analyze prereaction conformers of the nerve agent antidote HI-6 in complex with Mus musculus AChE covalently inhibited by the nerve agent sarin. These analyses reveal previously unknown conformations of the system and suggest that the cleavage of the covalent enzyme–sarin bond is preceded by a conformational change in the sarin adduct itself. Together with data from the reactivation kinetics, this alternate conformation suggests a key interaction between Glu202 and the O-isopropyl moiety of sarin. Moreover, solvent kinetic isotope effect experiments using deuterium oxide reveal that the reactivation mechanism features an isotope-sensitive step. These findings provide insights into the reactivation mechanism and provide a starting point for the development of improved antidotes. The work also illustrates how DFT calculations can guide the interpretation, analysis, and validation of crystallographic data for challenging reactive systems with complex conformational dynamics.


Journal of Computer-aided Molecular Design | 2015

Benefits of statistical molecular design, covariance analysis, and reference models in QSAR : a case study on acetylcholinesterase

C. David Andersson; J. Mikael Hillgren; Cecilia Lindgren; Weixing Qian; Christine Akfur; Lotta Berg; Fredrik Ekström; Anna Linusson

Scientific disciplines such as medicinal- and environmental chemistry, pharmacology, and toxicology deal with the questions related to the effects small organic compounds exhort on biological targets and the compounds’ physicochemical properties responsible for these effects. A common strategy in this endeavor is to establish structure–activity relationships (SARs). The aim of this work was to illustrate benefits of performing a statistical molecular design (SMD) and proper statistical analysis of the molecules’ properties before SAR and quantitative structure–activity relationship (QSAR) analysis. Our SMD followed by synthesis yielded a set of inhibitors of the enzyme acetylcholinesterase (AChE) that had very few inherent dependencies between the substructures in the molecules. If such dependencies exist, they cause severe errors in SAR interpretation and predictions by QSAR-models, and leave a set of molecules less suitable for future decision-making. In our study, SAR- and QSAR models could show which molecular sub-structures and physicochemical features that were advantageous for the AChE inhibition. Finally, the QSAR model was used for the prediction of the inhibition of AChE by an external prediction set of molecules. The accuracy of these predictions was asserted by statistical significance tests and by comparisons to simple but relevant reference models.


Toxicology Letters | 2018

8-Isoprostane is an early biomarker for oxidative stress in chlorine-induced acute lung injury

Linda Elfsmark; Lina Ågren; Christine Akfur; Anders Bucht; Sofia Jonasson

Inhalation of chlorine (Cl2) may cause oxidative acute lung injury (ALI) characterized by pulmonary edema, pneumonitis, and hyperreactive airways. The aim of the study was to identify possible biomarkers for Cl2-induced ALI. Female BALB/c mice were exposed to Cl2 for 15min using two protocols 1) concentration-dependent response (25-200ppm) and 2) time-kinetics (2h-14days post-exposure). Exposure to 50-200ppm Cl2 caused a concentration-dependent inflammatory response with increased expression of IL-1β, IL-6 and CXCL1/KC in bronchoalveolar lavage fluid 2-6h after exposure which was followed by increased lung permeability and a neutrophilic inflammation 12-24h post-exposure. The early inflammatory cytokine response was associated with a clear but transient increase of 8-isoprostane, a biomarker for oxidative stress, with its maximum at 2h after exposure. An increase of 8-isoprostane could also be detected in serum 2h after exposure to 200ppm Cl2, which was followed by increased levels of IL-6 and CXCL1/KC and signs of increased fibrinogen and PAI-1. Melphalan, a non-oxidizing mustard gas analog, did not increase the 8-isoprostane levels, indicating that 8-isoprostane is induced in airways through direct oxidation by Cl2. We conclude that 8-isoprostane represents an early biomarker for oxidative stress in airways and in the blood circulation following Cl2-exposure.


Molecules | 2017

An unusual dimeric inhibitor of acetylcholinesterase : cooperative binding of crystal violet

Anders Allgardsson; C. David Andersson; Christine Akfur; Franz Worek; Anna Linusson; Fredrik Ekström

Acetylcholinesterase (AChE) is an essential enzyme that terminates cholinergic transmission by a rapid hydrolysis of the neurotransmitter acetylcholine. AChE is an important target for treatment of various cholinergic deficiencies, including Alzheimer’s disease and myasthenia gravis. In a previous high throughput screening campaign, we identified the dye crystal violet (CV) as an inhibitor of AChE. Herein, we show that CV displays a significant cooperativity for binding to AChE, and the molecular basis for this observation has been investigated by X-ray crystallography. Two monomers of CV bind to residues at the entrance of the active site gorge of the enzyme. Notably, the two CV molecules have extensive intermolecular contacts with each other and with AChE. Computational analyses show that the observed CV dimer is not stable in solution, suggesting the sequential binding of two monomers. Guided by the structural analysis, we designed a set of single site substitutions, and investigated their effect on the binding of CV. Only moderate effects on the binding and the cooperativity were observed, suggesting a robustness in the interaction between CV and AChE. Taken together, we propose that the dimeric cooperative binding is due to a rare combination of chemical and structural properties of both CV and the AChE molecule itself.


Clinical Toxicology | 2018

Anti-inflammatory and anti-fibrotic treatment in a rodent model of acute lung injury induced by sulfur dioxide

Elisabeth Wigenstam; Linda Elfsmark; Lina Ågren; Christine Akfur; Anders Bucht; Sofia Jonasson

Abstract Context: Inhalation of sulfur dioxide (SO2) affects the lungs and exposure to high concentrations can be lethal. The early pulmonary response after inhaled SO2 involves tissue injury, acute neutrophilic lung inflammation and airway hyperresponsiveness (AHR). In rats, long-term pulmonary fibrosis is evident 14 days post-exposure as indicated by analysis of collagen deposition in lung tissue. Early treatment with a single dose of dexamethasone (DEX,10 mg/kg) significantly attenuates the acute inflammatory response in airways. However, this single DEX-treatment is not sufficient for complete protection against SO2-induced injuries. Methods: Female Sprague–Dawley rats exposed to SO2 (2200 ppm, nose-only exposure, 10 min) were given treatments (1, 5 and 23 h after SO2-exposure) with the anti-fibrotic and anti-inflammatory substance Pirfenidone (PFD, 200 mg/kg) or DEX (10 mg/kg) to evaluate whether the inflammatory response, AHR and lung fibrosis could be counteracted. Results: Both treatment approaches significantly reduced the total leukocyte response in bronchoalveolar lavage fluid and suppressed pulmonary edema. In contrast to DEX-treatment, PFD-treatment reduced the methacholine-induced AHR to almost control levels and partially suppressed the acute mucosal damage whereas multiple DEX-treatment was the only treatment that reduced collagen formation in lung tissue. Conclusions: To enable an accurate extrapolation of animal derived data to humans, a detailed understanding of the underlying mechanisms of the injury, and potential treatment options, is needed. The findings of the present study suggest that treatments with the capability to reduce both AHR, the inflammatory response, and fibrosis are needed to achieve a comprehensive mitigation of the acute lung injury caused by SO2.


Biochemistry | 2006

Structural Changes of Phenylalanine 338 and Histidine 447 Revealed by the Crystal Structures of Tabun-Inhibited Murine Acetylcholinesterase.

Fredrik Ekström; Christine Akfur; and Anna-Karin Tunemalm; Susanne Lundberg

Collaboration


Dive into the Christine Akfur's collaboration.

Top Co-Authors

Avatar

Fredrik Ekström

Swedish Defence Research Agency

View shared research outputs
Top Co-Authors

Avatar

Anders Bucht

Swedish Defence Research Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda Elfsmark

Swedish Defence Research Agency

View shared research outputs
Top Co-Authors

Avatar

Per Ola Andersson

Swedish Defence Research Agency

View shared research outputs
Top Co-Authors

Avatar

Anders Allgardsson

Swedish Defence Research Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge