Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Allen is active.

Publication


Featured researches published by Christine Allen.


Archive | 2017

Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016

Mohsen Naghavi; Amanuel Alemu Abajobir; Cristiana Abbafati; Kaja Abbas; Foad Abd-Allah; Semaw Ferede Abera; Victor Aboyans; Olatunji Adetokunboh; Johan Ärnlöv; Ashkan Afshin; Anurag Agrawal; Aliasghar Ahmad Kiadaliri; Alireza Ahmadi; Muktar Beshir Ahmed; Amani Nidhal Aichour; Ibtihel Aichour; Miloud Taki Eddine Aichour; Sneha Aiyar; Ayman Al-Eyadhy; Fares Alahdab; Ziyad Al-Aly; Khurshid Alam; Noore Alam; Tahiya Alam; Kefyalew Addis Alene; Syed Danish Ali; Reza Alizadeh-Navaei; Juma M. Alkaabi; Ala'a Alkerwi; François Alla

The last 37 years have featured declining rates of communicable, maternal, neonatal, and nutritional diseases across all quintiles of SDI, with faster than expected gains for many locations relative to their SDI. A global shift towards deaths at older ages suggests success in reducing many causes of early death. YLLs have increased globally for causes such as diabetes mellitus or some neoplasms, and in some locations for causes such as drug use disorders, and conflict and terrorism. Increasing levels of YLLs may reflect outcomes from conditions that required high levels of care but for which effective treatments remain elusive, potentially increasing costs to health systems.Summary Background Monitoring levels and trends in premature mortality is crucial to understanding how societies can address prominent sources of early death. The Global Burden of Disease 2016 Study (GBD 2016) provides a comprehensive assessment of cause-specific mortality for 264 causes in 195 locations from 1980 to 2016. This assessment includes evaluation of the expected epidemiological transition with changes in development and where local patterns deviate from these trends. Methods We estimated cause-specific deaths and years of life lost (YLLs) by age, sex, geography, and year. YLLs were calculated from the sum of each death multiplied by the standard life expectancy at each age. We used the GBD cause of death database composed of: vital registration (VR) data corrected for under-registration and garbage coding; national and subnational verbal autopsy (VA) studies corrected for garbage coding; and other sources including surveys and surveillance systems for specific causes such as maternal mortality. To facilitate assessment of quality, we reported on the fraction of deaths assigned to GBD Level 1 or Level 2 causes that cannot be underlying causes of death (major garbage codes) by location and year. Based on completeness, garbage coding, cause list detail, and time periods covered, we provided an overall data quality rating for each location with scores ranging from 0 stars (worst) to 5 stars (best). We used robust statistical methods including the Cause of Death Ensemble model (CODEm) to generate estimates for each location, year, age, and sex. We assessed observed and expected levels and trends of cause-specific deaths in relation to the Socio-demographic Index (SDI), a summary indicator derived from measures of average income per capita, educational attainment, and total fertility, with locations grouped into quintiles by SDI. Relative to GBD 2015, we expanded the GBD cause hierarchy by 18 causes of death for GBD 2016. Findings The quality of available data varied by location. Data quality in 25 countries rated in the highest category (5 stars), while 48, 30, 21, and 44 countries were rated at each of the succeeding data quality levels. Vital registration or verbal autopsy data were not available in 27 countries, resulting in the assignment of a zero value for data quality. Deaths from non-communicable diseases (NCDs) represented 72·3% (95% uncertainty interval [UI] 71·2–73·2) of deaths in 2016 with 19·3% (18·5–20·4) of deaths in that year occurring from communicable, maternal, neonatal, and nutritional (CMNN) diseases and a further 8·43% (8·00–8·67) from injuries. Although age-standardised rates of death from NCDs decreased globally between 2006 and 2016, total numbers of these deaths increased; both numbers and age-standardised rates of death from CMNN causes decreased in the decade 2006–16—age-standardised rates of deaths from injuries decreased but total numbers varied little. In 2016, the three leading global causes of death in children under-5 were lower respiratory infections, neonatal preterm birth complications, and neonatal encephalopathy due to birth asphyxia and trauma, combined resulting in 1·80 million deaths (95% UI 1·59 million to 1·89 million). Between 1990 and 2016, a profound shift toward deaths at older ages occurred with a 178% (95% UI 176–181) increase in deaths in ages 90–94 years and a 210% (208–212) increase in deaths older than age 95 years. The ten leading causes by rates of age-standardised YLL significantly decreased from 2006 to 2016 (median annualised rate of change was a decrease of 2·89%); the median annualised rate of change for all other causes was lower (a decrease of 1·59%) during the same interval. Globally, the five leading causes of total YLLs in 2016 were cardiovascular diseases; diarrhoea, lower respiratory infections, and other common infectious diseases; neoplasms; neonatal disorders; and HIV/AIDS and tuberculosis. At a finer level of disaggregation within cause groupings, the ten leading causes of total YLLs in 2016 were ischaemic heart disease, cerebrovascular disease, lower respiratory infections, diarrhoeal diseases, road injuries, malaria, neonatal preterm birth complications, HIV/AIDS, chronic obstructive pulmonary disease, and neonatal encephalopathy due to birth asphyxia and trauma. Ischaemic heart disease was the leading cause of total YLLs in 113 countries for men and 97 countries for women. Comparisons of observed levels of YLLs by countries, relative to the level of YLLs expected on the basis of SDI alone, highlighted distinct regional patterns including the greater than expected level of YLLs from malaria and from HIV/AIDS across sub-Saharan Africa; diabetes mellitus, especially in Oceania; interpersonal violence, notably within Latin America and the Caribbean; and cardiomyopathy and myocarditis, particularly in eastern and central Europe. The level of YLLs from ischaemic heart disease was less than expected in 117 of 195 locations. Other leading causes of YLLs for which YLLs were notably lower than expected included neonatal preterm birth complications in many locations in both south Asia and southeast Asia, and cerebrovascular disease in western Europe. Interpretation The past 37 years have featured declining rates of communicable, maternal, neonatal, and nutritional diseases across all quintiles of SDI, with faster than expected gains for many locations relative to their SDI. A global shift towards deaths at older ages suggests success in reducing many causes of early death. YLLs have increased globally for causes such as diabetes mellitus or some neoplasms, and in some locations for causes such as drug use disorders, and conflict and terrorism. Increasing levels of YLLs might reflect outcomes from conditions that required high levels of care but for which effective treatments remain elusive, potentially increasing costs to health systems. Funding Bill & Melinda Gates Foundation.


JAMA | 2017

Trends and Patterns of Disparities in Cancer Mortality Among US Counties, 1980-2014.

Ali H. Mokdad; Laura Dwyer-Lindgren; Christina Fitzmaurice; Rebecca W. Stubbs; Amelia Bertozzi-Villa; Chloe Morozoff; Raghid Charara; Christine Allen; Mohsen Naghavi; Christopher J L Murray

Introduction Cancer is a leading cause of morbidity and mortality in the United States and results in a high economic burden. Objective To estimate age-standardized mortality rates by US county from 29 cancers. Design and Setting Deidentified death records from the National Center for Health Statistics (NCHS) and population counts from the Census Bureau, the NCHS, and the Human Mortality Database from 1980 to 2014 were used. Validated small area estimation models were used to estimate county-level mortality rates from 29 cancers: lip and oral cavity; nasopharynx; other pharynx; esophageal; stomach; colon and rectum; liver; gallbladder and biliary; pancreatic; larynx; tracheal, bronchus, and lung; malignant skin melanoma; nonmelanoma skin cancer; breast; cervical; uterine; ovarian; prostate; testicular; kidney; bladder; brain and nervous system; thyroid; mesothelioma; Hodgkin lymphoma; non-Hodgkin lymphoma; multiple myeloma; leukemia; and all other cancers combined. Exposure County of residence. Main Outcomes and Measures Age-standardized cancer mortality rates by county, year, sex, and cancer type. Results A total of 19 511 910 cancer deaths were recorded in the United States between 1980 and 2014, including 5 656 423 due to tracheal, bronchus, and lung cancer; 2 484 476 due to colon and rectum cancer; 1 573 593 due to breast cancer; 1 077 030 due to prostate cancer; 1 157 878 due to pancreatic cancer; 209 314 due to uterine cancer; 421 628 due to kidney cancer; 487 518 due to liver cancer; 13 927 due to testicular cancer; and 829 396 due to non-Hodgkin lymphoma. Cancer mortality decreased by 20.1% (95% uncertainty interval [UI], 18.2%-21.4%) between 1980 and 2014, from 240.2 (95% UI, 235.8-244.1) to 192.0 (95% UI, 188.6-197.7) deaths per 100 000 population. There were large differences in the mortality rate among counties throughout the period: in 1980, cancer mortality ranged from 130.6 (95% UI, 114.7-146.0) per 100 000 population in Summit County, Colorado, to 386.9 (95% UI, 330.5-450.7) in North Slope Borough, Alaska, and in 2014 from 70.7 (95% UI, 63.2-79.0) in Summit County, Colorado, to 503.1 (95% UI, 464.9-545.4) in Union County, Florida. For many cancers, there were distinct clusters of counties with especially high mortality. The location of these clusters varied by type of cancer and were spread in different regions of the United States. Clusters of breast cancer were present in the southern belt and along the Mississippi River, while liver cancer was high along the Texas-Mexico border, and clusters of kidney cancer were observed in North and South Dakota and counties in West Virginia, Ohio, Indiana, Louisiana, Oklahoma, Texas, Alaska, and Illinois. Conclusions and Relevance Cancer mortality declined overall in the United States between 1980 and 2014. Over this same period, there were important changes in trends, patterns, and differences in cancer mortality among US counties. These patterns may inform further research into improving prevention and treatment.


JAMA Oncology | 2017

The Burden of Primary Liver Cancer and Underlying Etiologies From 1990 to 2015 at the Global, Regional, and National Level: Results From the Global Burden of Disease Study 2015

Tomi Akinyemiju; Semaw Ferede Abera; Muktar Beshir Ahmed; Noore Alam; Mulubirhan Assefa Alemayohu; Christine Allen; Rajaa Al-Raddadi; Nelson Alvis-Guzman; Yaw Ampem Amoako; Al Artaman; Tadesse Awoke Ayele; Aleksandra Barac; Isabela M. Benseñor; Adugnaw Berhane; Zulfiqar A. Bhutta; Jacqueline Castillo-Rivas; Abdulaal A Chitheer; Jee-Young Jasmine Choi; Benjamin C. Cowie; Lalit Dandona; Rakhi Dandona; Subhojit Dey; Daniel Dicker; Huyen Phuc; Donatus U. Ekwueme; Maysaa El Sayed Zaki; Florian Fischer; Thomas Fürst; Jamie Hancock; Simon I. Hay

Importance Liver cancer is among the leading causes of cancer deaths globally. The most common causes for liver cancer include hepatitis B virus (HBV) and hepatitis C virus (HCV) infection and alcohol use. Objective To report results of the Global Burden of Disease (GBD) 2015 study on primary liver cancer incidence, mortality, and disability-adjusted life-years (DALYs) for 195 countries or territories from 1990 to 2015, and present global, regional, and national estimates on the burden of liver cancer attributable to HBV, HCV, alcohol, and an “other” group that encompasses residual causes. Design, Settings, and Participants Mortality was estimated using vital registration and cancer registry data in an ensemble modeling approach. Single-cause mortality estimates were adjusted for all-cause mortality. Incidence was derived from mortality estimates and the mortality-to-incidence ratio. Through a systematic literature review, data on the proportions of liver cancer due to HBV, HCV, alcohol, and other causes were identified. Years of life lost were calculated by multiplying each death by a standard life expectancy. Prevalence was estimated using mortality-to-incidence ratio as surrogate for survival. Total prevalence was divided into 4 sequelae that were multiplied by disability weights to derive years lived with disability (YLDs). DALYs were the sum of years of life lost and YLDs. Main Outcomes and Measures Liver cancer mortality, incidence, YLDs, years of life lost, DALYs by etiology, age, sex, country, and year. Results There were 854 000 incident cases of liver cancer and 810 000 deaths globally in 2015, contributing to 20 578 000 DALYs. Cases of incident liver cancer increased by 75% between 1990 and 2015, of which 47% can be explained by changing population age structures, 35% by population growth, and −8% to changing age-specific incidence rates. The male-to-female ratio for age-standardized liver cancer mortality was 2.8. Globally, HBV accounted for 265 000 liver cancer deaths (33%), alcohol for 245 000 (30%), HCV for 167 000 (21%), and other causes for 133 000 (16%) deaths, with substantial variation between countries in the underlying etiologies. Conclusions and Relevance Liver cancer is among the leading causes of cancer deaths in many countries. Causes of liver cancer differ widely among populations. Our results show that most cases of liver cancer can be prevented through vaccination, antiviral treatment, safe blood transfusion and injection practices, as well as interventions to reduce excessive alcohol use. In line with the Sustainable Development Goals, the identification and elimination of risk factors for liver cancer will be required to achieve a sustained reduction in liver cancer burden. The GBD study can be used to guide these prevention efforts.


JAMA Oncology | 2018

Global Burden of Multiple Myeloma: A Systematic Analysis for the Global Burden of Disease Study 2016

Andrew J. Cowan; Christine Allen; Aleksandra Barac; Huda Basaleem; Isabela M. Benseñor; Maria Paula Curado; Kyle Foreman; Rahul Gupta; James Harvey; H. Dean Hosgood; Mihajlo Jakovljevic; Yousef Khader; Shai Linn; Deepesh Lad; Lg Mantovani; Vuong Minh Nong; Ali H. Mokdad; Mohsen Naghavi; Maarten Postma; Gholamreza Roshandel; Katya A. Shackelford; Mekonnen Sisay; Cuong Tat Nguyen; Tung Thanh Tran; Bach Tran Xuan; Kingsley Nnanna Ukwaja; Stein Emil Vollset; Elisabete Weiderpass; Edward N. Libby; Christina Fitzmaurice

Introduction Multiple myeloma (MM) is a plasma cell neoplasm with substantial morbidity and mortality. A comprehensive description of the global burden of MM is needed to help direct health policy, resource allocation, research, and patient care. Objective To describe the burden of MM and the availability of effective therapies for 21 world regions and 195 countries and territories from 1990 to 2016. Design and Setting We report incidence, mortality, and disability-adjusted life-year (DALY) estimates from the Global Burden of Disease 2016 study. Data sources include vital registration system, cancer registry, drug availability, and survey data for stem cell transplant rates. We analyzed the contribution of aging, population growth, and changes in incidence rates to the overall change in incident cases from 1990 to 2016 globally, by sociodemographic index (SDI) and by region. We collected data on approval of lenalidomide and bortezomib worldwide. Main Outcomes and Measures Multiple myeloma mortality; incidence; years lived with disabilities; years of life lost; and DALYs by age, sex, country, and year. Results Worldwide in 2016 there were 138 509 (95% uncertainty interval [UI], 121 000-155 480) incident cases of MM with an age-standardized incidence rate (ASIR) of 2.1 per 100 000 persons (95% UI, 1.8-2.3). Incident cases from 1990 to 2016 increased by 126% globally and by 106% to 192% for all SDI quintiles. The 3 world regions with the highest ASIR of MM were Australasia, North America, and Western Europe. Multiple myeloma caused 2.1 million (95% UI, 1.9-2.3 million) DALYs globally in 2016. Stem cell transplantation is routinely available in higher-income countries but is lacking in sub-Saharan Africa and parts of the Middle East. In 2016, lenalidomide and bortezomib had been approved in 73 and 103 countries, respectively. Conclusions and Relevance Incidence of MM is highly variable among countries but has increased uniformly since 1990, with the largest increase in middle and low-middle SDI countries. Access to effective care is very limited in many countries of low socioeconomic development, particularly in sub-Saharan Africa. Global health policy priorities for MM are to improve diagnostic and treatment capacity in low and middle income countries and to ensure affordability of effective medications for every patient. Research priorities are to elucidate underlying etiological factors explaining the heterogeneity in myeloma incidence.


Archive | 2017

Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016

Theo Vos; Amanuel Alemu Abajobir; Cristiana Abbafati; Kaja Abbas; Kalkidan Hassen Abate; Foad Abd-Allah; Abdishakur M Abdulle; Teshome Abuka Abebo; Semaw Ferede Abera; Victor Aboyans; Laith J. Abu-Raddad; Ilana N. Ackerman; Abdu A. Adamu; Olatunji Adetokunboh; Mohsen Afarideh; Ashkan Afshin; Sanjay Kumar Agarwal; Rakesh Aggarwal; Anurag Agrawal; Sutapa Agrawal; Aliasghar Ahmad Kiadaliri; Hamid Ahmadieh; Muktar Beshir Ahmed; Amani Nidhal Aichour; Ibtihel Aichour; Miloud Taki Eddine Aichour; Sneha Aiyar; Rufus Akinyemi; Nadia Akseer; Faris Hasan Al Lami

As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016.; We estimated prevalence and incidence for 328 diseases and injuries and 2982 sequelae, their non-fatal consequences. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between incidence, prevalence, remission, and cause of death rates for each condition. For some causes, we used alternative modelling strategies if incidence or prevalence needed to be derived from other data. YLDs were estimated as the product of prevalence and a disability weight for all mutually exclusive sequelae, corrected for comorbidity and aggregated to cause level. We updated the Socio-demographic Index (SDI), a summary indicator of income per capita, years of schooling, and total fertility rate. GBD 2016 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER).; Globally, low back pain, migraine, age-related and other hearing loss, iron-deficiency anaemia, and major depressive disorder were the five leading causes of YLDs in 2016, contributing 57·6 million (95% uncertainty interval [UI] 40·8-75·9 million [7·2%, 6·0-8·3]), 45·1 million (29·0-62·8 million [5·6%, 4·0-7·2]), 36·3 million (25·3-50·9 million [4·5%, 3·8-5·3]), 34·7 million (23·0-49·6 million [4·3%, 3·5-5·2]), and 34·1 million (23·5-46·0 million [4·2%, 3·2-5·3]) of total YLDs, respectively. Age-standardised rates of YLDs for all causes combined decreased between 1990 and 2016 by 2·7% (95% UI 2·3-3·1). Despite mostly stagnant age-standardised rates, the absolute number of YLDs from non-communicable diseases has been growing rapidly across all SDI quintiles, partly because of population growth, but also the ageing of populations. The largest absolute increases in total numbers of YLDs globally were between the ages of 40 and 69 years. Age-standardised YLD rates for all conditions combined were 10·4% (95% UI 9·0-11·8) higher in women than in men. Iron-deficiency anaemia, migraine, Alzheimers disease and other dementias, major depressive disorder, anxiety, and all musculoskeletal disorders apart from gout were the main conditions contributing to higher YLD rates in women. Men had higher age-standardised rates of substance use disorders, diabetes, cardiovascular diseases, cancers, and all injuries apart from sexual violence. Globally, we noted much less geographical variation in disability than has been documented for premature mortality. In 2016, there was a less than two times difference in age-standardised YLD rates for all causes between the location with the lowest rate (China, 9201 YLDs per 100 000, 95% UI 6862-11943) and highest rate (Yemen, 14 774 YLDs per 100 000, 11 018-19 228).; The decrease in death rates since 1990 for most causes has not been matched by a similar decline in age-standardised YLD rates. For many large causes, YLD rates have either been stagnant or have increased for some causes, such as diabetes. As populations are ageing, and the prevalence of disabling disease generally increases steeply with age, health systems will face increasing demand for services that are generally costlier than the interventions that have led to declines in mortality in childhood or for the major causes of mortality in adults. Up-to-date information about the trends of disease and how this varies between countries is essential to plan for an adequate health-system response.; Bill & Melinda Gates Foundation, and the National Institute on Aging and the National Institute of Mental Health of the National Institutes of Health.Summary Background As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016. Methods We estimated prevalence and incidence for 328 diseases and injuries and 2982 sequelae, their non-fatal consequences. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between incidence, prevalence, remission, and cause of death rates for each condition. For some causes, we used alternative modelling strategies if incidence or prevalence needed to be derived from other data. YLDs were estimated as the product of prevalence and a disability weight for all mutually exclusive sequelae, corrected for comorbidity and aggregated to cause level. We updated the Socio-demographic Index (SDI), a summary indicator of income per capita, years of schooling, and total fertility rate. GBD 2016 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, low back pain, migraine, age-related and other hearing loss, iron-deficiency anaemia, and major depressive disorder were the five leading causes of YLDs in 2016, contributing 57·6 million (95% uncertainty interval [UI] 40·8–75·9 million [7·2%, 6·0–8·3]), 45·1 million (29·0–62·8 million [5·6%, 4·0–7·2]), 36·3 million (25·3–50·9 million [4·5%, 3·8–5·3]), 34·7 million (23·0–49·6 million [4·3%, 3·5–5·2]), and 34·1 million (23·5–46·0 million [4·2%, 3·2–5·3]) of total YLDs, respectively. Age-standardised rates of YLDs for all causes combined decreased between 1990 and 2016 by 2·7% (95% UI 2·3–3·1). Despite mostly stagnant age-standardised rates, the absolute number of YLDs from non-communicable diseases has been growing rapidly across all SDI quintiles, partly because of population growth, but also the ageing of populations. The largest absolute increases in total numbers of YLDs globally were between the ages of 40 and 69 years. Age-standardised YLD rates for all conditions combined were 10·4% (95% UI 9·0–11·8) higher in women than in men. Iron-deficiency anaemia, migraine, Alzheimers disease and other dementias, major depressive disorder, anxiety, and all musculoskeletal disorders apart from gout were the main conditions contributing to higher YLD rates in women. Men had higher age-standardised rates of substance use disorders, diabetes, cardiovascular diseases, cancers, and all injuries apart from sexual violence. Globally, we noted much less geographical variation in disability than has been documented for premature mortality. In 2016, there was a less than two times difference in age-standardised YLD rates for all causes between the location with the lowest rate (China, 9201 YLDs per 100 000, 95% UI 6862–11943) and highest rate (Yemen, 14 774 YLDs per 100 000, 11 018–19 228). Interpretation The decrease in death rates since 1990 for most causes has not been matched by a similar decline in age-standardised YLD rates. For many large causes, YLD rates have either been stagnant or have increased for some causes, such as diabetes. As populations are ageing, and the prevalence of disabling disease generally increases steeply with age, health systems will face increasing demand for services that are generally costlier than the interventions that have led to declines in mortality in childhood or for the major causes of mortality in adults. Up-to-date information about the trends of disease and how this varies between countries is essential to plan for an adequate health-system response. Funding Bill & Melinda Gates Foundation, and the National Institute on Aging and the National Institute of Mental Health of the National Institutes of Health.


Salud Publica De Mexico | 2016

The burden of cancer in Mexico, 1990-2013

Héctor Gómez-Dantés; Hector Lamadrid-Figueroa; Lucero Cahuana-Hurtado; Omar Silverman-Retana; Pablo Montero; María Cecilia González-Robledo; Christina Fitzmaurice; Amanda W Pain; Christine Allen; Daniel Dicker; Hannah Hamavid; Alan D. Lopez; Christopher J L Murray; Mohsen Naghavi; Rafael Lozano


Journal of Public Health | 2001

An assessment of need for health visiting in general practice populations.

Nicholas Steel; Richard Reading; Christine Allen


Clinical Lymphoma, Myeloma & Leukemia | 2015

The Global Burden of Non-Hodgkin Lymphoma

Christina Fitzmaurice; Hannah Hamavid; Daniel Dicker; Christine Allen; Mohsen Naghavi


The Lancet | 2017

Erratum:Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016 (The Lancet (2017) 390(10100) (1423–1459) (S0

Ryan M. Barber; Amanuel Alemu Abajobir; Kalkidan Hassen Abate; Cristiana Abbafati; Kaja Abbas; Foad Abd-Allah; Rizwan Suliankatchi Abdulkader; Abdishakur M Abdulle; Semaw Ferede Abera; Aboyans; Laith J. Abu-Raddad; Nme Abu-Rmeileh; Isaac Akinkunmi Adedeji; Olatunji Adetokunboh; Ashkan Afshin; Anurag Agrawal; Sutapa Agrawal; Aliasghar Ahmad Kiadaliri; Hamid Ahmadieh; Muktar Beshir Ahmed; Mte Aichour; Amani Nidhal Aichour; Ibtihel Aichour; Sneha Aiyar; Rufus Akinyemi; Nadia Akseer; Ziyad Al-Aly; Khurshid Alam; Noore Alam; Deena Alasfoor

Collaboration


Dive into the Christine Allen's collaboration.

Top Co-Authors

Avatar

Mohsen Naghavi

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashkan Afshin

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Daniel Dicker

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sneha Aiyar

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge