Christine B. Yoo
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christine B. Yoo.
Molecular Cancer Therapeutics | 2009
Tina B. Miranda; Connie C. Cortez; Christine B. Yoo; Gangning Liang; Masanobu Abe; Theresa K. Kelly; Victor E. Marquez; Peter A. Jones
DNA methylation, histone modifications, and nucleosomal occupancy collaborate to cause silencing of tumor-related genes in cancer. The development of drugs that target these processes is therefore important for cancer therapy. Inhibitors of DNA methylation and histone deacetylation have been approved by the Food and Drug Administration for treatment of hematologic malignancies. However, drugs that target other mechanisms still need to be developed. Recently, 3-deazaneplanocin A (DZNep) was reported to selectively inhibit trimethylation of lysine 27 on histone H3 (H3K27me3) and lysine 20 on histone H4 (H4K20me3) as well as reactivate silenced genes in cancer cells. This finding opens the door to the pharmacologic inhibition of histone methylation. We therefore wanted to further study the mechanism of action of DZNep in cancer cells. Western blot analysis shows that DZNep globally inhibits histone methylation and is not selective. Two other drugs, sinefungin and adenosine dialdehyde, have similar effects as DZNep on H3K27me3. Intriguingly, chromatin immunoprecipitation of various histone modifications and microarray analysis show that DZNep acts through a different pathway than 5-aza-2′-deoxycytidine, a DNA methyltransferase inhibitor. These observations give us interesting insight into how chromatin structure affects gene expression. We also determined the kinetics of gene activation to understand if the induced changes were somatically heritable. We found that upon removal of DZNep, gene expression is reduced to its original state. This suggests that there is a homeostatic mechanism that returns the histone modifications to their “ground state” after DZNep treatment. Our data show the strong need for further development of histone methylation inhibitors. [Mol Cancer Ther 2009;8(6):1579–88]
Clinical Cancer Research | 2004
Martin G. Friedrich; Daniel J. Weisenberger; Jonathan C. Cheng; Shahin Chandrasoma; Kimberly D. Siegmund; Mark L. Gonzalgo; Marieta Toma; Hartwig Huland; Christine B. Yoo; Yvonne C. Tsai; Peter W. Nichols; Bernard H. Bochner; Peter A. Jones; Gangning Liang
Purpose: There is increasing evidence for a fundamental role for epigenetic silencing of apoptotic pathways in cancer. Changes in DNA methylation can be detected with a high degree of sensitivity, so we used the MethyLight assay to determine how methylation patterns of apoptosis-associated genes change during bladder carcinogenesis and whether DNA methylation could be detected in urine sediments. Experimental Design: We analyzed the methylation status of the 5′ regions of 12 apoptosis-associated genes (ARF, FADD, TNFRSF21, BAX, LITAF, DAPK, TMS-1, BCL2, RASSF1A, TERT, TNFRSF25, and EDNRB) in 18 bladder cancer cell lines, 127 bladder cancer samples, and 37 samples of adjacent normal bladder mucosa using the quantitative MethyLight assay. We also analyzed the methylation status in urine sediments of 20 cancer-free volunteers and 37 bladder cancer patients. Results: The 5′ regions of DAPK, BCL2, TERT, RASSFIA, and TNFRSF25 showed significant increases in methylation levels when compared with nonmalignant adjacent tissue (P ≤ 0.01). Methylation levels of BCL2 were significantly associated with tumor staging and grading (P ≤ 0.01), whereas methylation levels of RASSF1A and ARF were only associated with tumor stage (P ≤ 0.04), and TERT methylation and EDNRB methylation were predictors of tumor grade (P ≤ 0.02). To investigate clinical usefulness for noninvasive bladder cancer detection, we further analyzed the methylation status of the markers in urine samples of patients with bladder cancer. Methylation of DAPK, BCL2, and TERT in urine sediment DNA from bladder cancer patients was detected in the majority of samples (78%), whereas they were unmethylated in the urine sediment DNA from age-matched cancer-free individuals. Conclusions: Our results indicate that methylation of the 5′ region of apoptosis-associated genes is a common finding in patients with bladder carcinoma. The ability to detect methylation not only in bladder tissue, but also in urine sediments, suggests that methylation markers are promising tools for noninvasive detection of bladder cancers. Our results also indicate that some methylation markers, such as those in regions of RASSF1A and TNFRSF25, might be of limited use for detection because they are also methylated in normal bladder tissues.
Molecular Cancer Therapeutics | 2005
Jody C. Chuang; Christine B. Yoo; Jennifer M. Kwan; Tony W. H. Li; Gangning Liang; Allen S. Yang; Peter A. Jones
DNA cytosine methylation plays a considerable role in normal development, gene regulation, and carcinogenesis. Hypermethylation of the promoters of some tumor suppressor genes and the associated silencing of these genes often occur in certain cancer types. The reversal of this process by DNA methylation inhibitors is a promising new strategy for cancer therapy. In addition to the four well-characterized nucleoside analogue methylation inhibitors, 5-azacytidine, 5-aza-2′-deoxycytidine (5-Aza-CdR), 5-fluoro-2′-deoxycytidine, and zebularine, there is a growing list of non-nucleoside inhibitors. However, a systemic study comparing these potential demethylating agents has not been done. In this study, we examined three non-nucleoside demethylating agents, (−)-epigallocatechin-3-gallate, hydralazine, and procainamide, and compared their effects and potencies with 5-Aza-CdR, the most potent DNA methylation inhibitor. We found that 5-Aza-CdR is far more effective in DNA methylation inhibition as well as in reactivating genes, compared with non-nucleoside inhibitors.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Gerda Egger; Shinwu Jeong; Sonia G. Escobar; Connie C. Cortez; Tony W. H. Li; Yoshimasa Saito; Christine B. Yoo; Peter A. Jones; Gangning Liang
Previous studies have shown that DNA methyltransferase (Dnmt) 1 is required for maintenance of bulk DNA methylation and is essential for mouse development. However, somatic disruption of DNMT1 in the human cancer cell line HCT116 was not lethal and caused only minor decreases in methylation. Here, we report the identification of a truncated DNMT1 protein, which was generated by the disruption of DNMT1 in HCT116 cells. The truncated protein, which had parts of the regulatory N-terminal domain deleted but preserved the catalytic C-terminal domain, was present at different levels in all DNMT1 single-knockout and DNMT1/DNMT3b double-knockout cell lines tested and retained hemimethylase activity. DNMT1 RNAi resulted in decreased cell viability in WT and knockout cells and further loss of DNA methylation in DNMT1 knockout cells. Furthermore, we observed a delay in methylation after replication and an increase in hemimethylation of specific CpG sites in cells expressing the truncated protein. Remethylation studies after drug-induced hypomethylation suggest a putative role of DNMT1 in the de novo methylation of a subtelomeric repeat, D4Z4, which is lost in cells lacking full-length DNMT1. Our data suggest that DNMT1 might be essential for maintenance of DNA methylation, proliferation, and survival of cancer cells.
Molecular and Cellular Biology | 2009
Shinwu Jeong; Gangning Liang; Shikhar Sharma; Joy C. Lin; Si Ho Choi; Han Han; Christine B. Yoo; Gerda Egger; Allen S. Yang; Peter A. Jones
ABSTRACT Proper DNA methylation patterns are essential for mammalian development and differentiation. DNA methyltransferases (DNMTs) primarily establish and maintain global DNA methylation patterns; however, the molecular mechanisms for the generation and inheritance of methylation patterns are still poorly understood. We used sucrose density gradients of nucleosomes prepared by partial and maximum micrococcal nuclease digestion, coupled with Western blot analysis to probe for the interactions between DNMTs and native nucleosomes. This method allows for analysis of the in vivo interactions between the chromatin modification enzymes and their actual nucleosomal substrates in the native state. We show that little free DNA methyltransferase 3A and 3B (DNMT3A/3B) exist in the nucleus and that almost all of the cellular contents of DNMT3A/3B, but not DNMT1, are strongly anchored to a subset of nucleosomes. This binding of DNMT3A/3B does not require the presence of other well-known chromatin-modifying enzymes or proteins, such as proliferating cell nuclear antigen, heterochromatin protein 1, methyl-CpG binding protein 2, Enhancer of Zeste homolog 2, histone deacetylase 1, and UHRF1, but it does require an intact nucleosomal structure. We also show that nucleosomes containing methylated SINE and LINE elements and CpG islands are the main sites of DNMT3A/3B binding. These data suggest that inheritance of DNA methylation requires cues from the chromatin component in addition to hemimethylation.
Molecular Cancer Therapeutics | 2010
Jody C. Chuang; Steven L. Warner; David Vollmer; Hariprasad Vankayalapati; Sanjeev Redkar; David J. Bearss; Xiangning Qiu; Christine B. Yoo; Peter A. Jones
Methylation of CpG islands in promoter regions is often associated with gene silencing and aberrant DNA methylation occurs in most cancers, leading to the silencing of some tumor suppressor genes. Reversal of this abnormal hypermethylation by DNA methylation inhibitors is effective in reactivating methylation-silenced tumor suppressor genes both in vitro and in vivo. Several DNA methylation inhibitors have been well studied; the most potent among them is 5-aza-2′-deoxycytidine (5-Aza-CdR), which can induce myelosuppression in patients. S110 is a dinucleotide consisting of 5-Aza-CdR followed by a deoxyguanosine, which we previously showed to be effective in vitro as a DNA methylation inhibitor while being less prone to deamination by cytidine deaminase, making it a promising alternative to 5-Aza-CdR. Here, we show that S110 is better tolerated than 5-Aza-CdR in mice and is as effective in vivo in inducing p16 expression, reducing DNA methylation at the p16 promoter region, and retarding tumor growth in human xenograft. We also show that S110 is effective by both i.p. and s.c. deliveries. S110 therefore is a promising new agent that acts similarly to 5-Aza-CdR and has better stability and less toxicity. Mol Cancer Ther; 9(5); 1443–50. ©2010 AACR.
Cancer Prevention Research | 2008
Christine B. Yoo; Jody C. Chuang; Hyang-Min Byun; Gerda Egger; Allen S. Yang; Louis Dubeau; Tiffany I. Long; Peter W. Laird; Victor E. Marquez; Peter A. Jones
Recent successes in the application of epigenetic drugs for the treatment of myelodysplastic syndrome have raised questions on the safety of long-term administration of DNA methylation inhibitors. We treated preweaned cancer prone ApcMin/+ (Min) mice continuously with the DNA methylation inhibitor zebularine in their drinking water to determine the effects of the drug on normal mouse development as well as cancer prevention. Zebularine caused a tissue-specific reduction in DNA methylation at B1 short interspersed nucleotide elements in the small and large intestines of female Min mice but not in other organs examined after chronic oral treatment. No significant difference in the average weights of mice was observed during the treatment. In addition, analysis of global gene expression of colonic epithelial cells from the females indicated that only 3% to 6% of the genes were affected in their expression. We did not detect toxicity and abnormalities from the histopathologic analysis of liver and intestinal tissues. Lastly, we tested whether prevention of tumorigenesis can be achieved with chronic oral administration of zebularine in Min mice. The average number of polyps in Min females decreased from 58 to 1, whereas the average polyp number remained unaffected in Min males possibly due to differential activity of aldehyde oxidase. Taken together, our results show for the first time that long-term oral administration of zebularine causes a gender-specific abrogation of intestinal tumors while causing a tissue-specific DNA demethylation. Importantly, prolonged treatment of mice with epigenetic drugs resulted in only minor developmental and histologic changes.
Annals of the New York Academy of Sciences | 2005
Victor E. Marquez; James A. Kelley; Riad Agbaria; Tisipi Ben‐Kasus; Jonathan C. Cheng; Christine B. Yoo; Peter A. Jones
1‐(β‐d‐ribofuranosyl)‐1,2‐dihydropyrimidin‐2‐one (zebularine) corresponds structurally to cytidine minus the exocyclic 4‐amino group. The increased electrophilic character of its simple aglycon endows the molecule with unique biologic properties as a potent inhibitor of both cytidine deaminase and DNA cytosine methyltransferase. The latter activity makes zebularine a promising antitumor agent that is hydrolytically stable, preferentially targets cancer cells, and shows activity both in vitro and in experimental animals, even after oral administration.
Epigenetics | 2009
Ana Aparicio; Brittany North; Lindsey Barske; Xuemei Wang; Valentina Bollati; Daniel J. Weisenberger; Christine B. Yoo; Nizar M. Tannir; Erin Horne; Susan Groshen; Peter M. Jones; Allen S. Yang; Jean-Pierre Issa
Multiple clinical trials are investigating the use of the DNA methylation inhibitors azacitidine and decitabine for the treatment of solid tumors. Clinical trials in hematological malignancies have shown that optimal activity does not occur at their maximum tolerated doses but selection of an optimal biological dose and schedule for use in solid tumor patients is hampered by the difficulty of obtaining tumor tissue to measure their activity. Here we investigate the feasibility of using plasma DNA to measure the demethylating activity of the DNA methylation inhibitors in patients with solid tumors. We compared four methods to measure LINE-1 and MAGE-A1 promoter methylation in T24 and HCT116 cancer cells treated with decitabine treatment and selected Pyrosequencing for its greater reproducibility and higher signal to noise ratio. We then obtained DNA from plasma, peripheral blood mononuclear cells, buccal mucosa cells and saliva from ten patients with metastatic solid tumors at two different time points, without any intervening treatment. DNA methylation measurements were not significantly different between time point 1 and time point 2 in patient samples. We conclude that measurement of LINE-1 methylation in DNA extracted from the plasma of patients with advanced solid tumors, using Pyrosequencing, is feasible and has low within patient variability. Ongoing studies will determine whether changes in LINE-1 methylation in plasma DNA occur as a result of treatment with DNA methylation inhibitors and parallel changes in tumor tissue DNA.
Nucleosides, Nucleotides & Nucleic Acids | 2005
Victor E. Marquez; Joseph J. Barchi; James A. Kelley; Kambhampati V. R. Rao; Riad Agbaria; Tsipi Ben-Kasus; Jonathan C. Cheng; Christine B. Yoo; Peter A. Jones
1-(β-D-ribofuranosyl)-1,2-dihydropyrimidin-2-one (zebularine) is structurally 4-deamino cytidine. The increased electrophilic character of this simple aglycon endows the molecule with unique chemical and biological properties, making zebularine a versatile starting material for the synthesis of complex nucleosides and an effective inhibitor of cytidine deaminase and DNA cytosine methyltransferase. Zebularine is a stable, antitumor agent that preferentially targets cancer cells and shows activity both in vitro and in experimental animals, even after oral administration.