Christine Basmadjian
University of Strasbourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christine Basmadjian.
Nature | 2014
L. Boussemart; Hélène Malka-Mahieu; Isabelle Girault; Delphine Allard; Oskar Hemmingsson; Gorana Tomasic; M. Thomas; Christine Basmadjian; Nigel Ribeiro; Frédéric Thuaud; Christina Mateus; E. Routier; Nyam Kamsu-Kom; Sandrine Agoussi; Alexander M.M. Eggermont; Laurent Désaubry; Caroline Robert; Stéphan Vagner
In BRAF(V600)-mutant tumours, most mechanisms of resistance to drugs that target the BRAF and/or MEK kinases rely on reactivation of the RAS–RAF–MEK–ERK mitogen-activated protein kinase (MAPK) signal transduction pathway, on activation of the alternative, PI(3)K–AKT–mTOR, pathway (which is ERK independent) or on modulation of the caspase-dependent apoptotic cascade. All three pathways converge to regulate the formation of the eIF4F eukaryotic translation initiation complex, which binds to the 7-methylguanylate cap (m7G) at the 5′ end of messenger RNA, thereby modulating the translation of specific mRNAs. Here we show that the persistent formation of the eIF4F complex, comprising the eIF4E cap-binding protein, the eIF4G scaffolding protein and the eIF4A RNA helicase, is associated with resistance to anti-BRAF, anti-MEK and anti-BRAF plus anti-MEK drug combinations in BRAF(V600)-mutant melanoma, colon and thyroid cancer cell lines. Resistance to treatment and maintenance of eIF4F complex formation is associated with one of three mechanisms: reactivation of MAPK signalling, persistent ERK-independent phosphorylation of the inhibitory eIF4E-binding protein 4EBP1 or increased pro-apoptotic BCL-2-modifying factor (BMF)-dependent degradation of eIF4G. The development of an in situ method to detect the eIF4E–eIF4G interactions shows that eIF4F complex formation is decreased in tumours that respond to anti-BRAF therapy and increased in resistant metastases compared to tumours before treatment. Strikingly, inhibiting the eIF4F complex, either by blocking the eIF4E–eIF4G interaction or by targeting eIF4A, synergizes with inhibiting BRAF(V600) to kill the cancer cells. eIF4F not only appears to be an indicator of both innate and acquired resistance but also is a promising therapeutic target. Combinations of drugs targeting BRAF (and/or MEK) and eIF4F may overcome most of the resistance mechanisms arising in BRAF(V600)-mutant cancers.
Frontiers in chemistry | 2014
Christine Basmadjian; Qian Zhao; Embarek Bentouhami; Amel Djehal; Canan G. Nebigil; Roger A. Johnson; Maria Serova; Armand de Gramont; Sandrine Faivre; Eric Raymond; Laurent Désaubry
Natural products have historically been a mainstay source of anticancer drugs, but in the 90s they fell out of favor in pharmaceutical companies with the emergence of targeted therapies, which rely on antibodies or small synthetic molecules identified by high throughput screening. Although targeted therapies greatly improved the treatment of a few cancers, the benefit has remained disappointing for many solid tumors, which revitalized the interest in natural products. With the approval of rapamycin in 2007, 12 novel natural product derivatives have been brought to market. The present review describes the discovery and development of these new anticancer drugs and highlights the peculiarities of natural product and new trends in this exciting field of drug discovery.
Future Medicinal Chemistry | 2013
Christine Basmadjian; Frédéric Thuaud; Nigel Ribeiro; Laurent Désaubry
Flavaglines are complex natural products that are found in several medicinal plants of Southeast Asia in the genus Aglaia; these compounds have shown exceptional anticancer and cytoprotective activities. This review describes the significance of flavaglines as a new class of pharmacological agents and presents recent developments in their synthesis, structure-activity relationships, identification of their molecular targets and modes of action. Flavaglines display a unique profile of anticancer activities that are mediated by two classes of unrelated proteins: prohibitins and the translation initiation factor eIF4A. The identification of these molecular targets is expected to accelerate advancement toward clinical studies. The selectivity of cytotoxicity towards cancer cells has been shown to be due to an inhibition of the transcription factor HSF1 and an upregulation of the tumor suppressor TXNIP. In addition, flavaglines display potent anti-inflammatory, cardioprotective and neuroprotective activities; however, the mechanisms underlying these activities are yet to be elucidated.
Microbiology and Immunology | 2015
Phitchayapak Wintachai; Frédéric Thuaud; Christine Basmadjian; Sittiruk Roytrakul; Sukathida Ubol; Laurent Désaubry; Duncan R. Smith
Chikungunya virus (CHIKV) is a re‐emerging mosquito‐borne alphavirus that recently caused large epidemics in islands in, and countries around, the Indian Ocean. There is currently no specific drug for therapeutic treatment or for use as a prophylactic agent against infection and no commercially available vaccine. Prohibitin has been identified as a receptor protein used by chikungunya virus to enter mammalian cells. Recently, synthetic sulfonyl amidines and flavaglines (FLs), a class of naturally occurring plant compounds with potent anti‐cancer and cytoprotective and neuroprotective activities, have been shown to interact directly with prohibitin. This study therefore sought to determine whether three prohibitin ligands (sulfonyl amidine 1 m and the flavaglines FL3 and FL23) were able to inhibit CHIKV infection of mammalian Hek293T/17 cells. All three compounds inhibited infection and reduced virus production when cells were treated before infection but not when added after infection. Pretreatment of cells for only 15 minutes prior to infection followed by washing out of the compound resulted in significant inhibition of entry and virus production. These results suggest that further investigation of prohibitin ligands as potential Chikungunya virus entry inhibitors is warranted.
PLOS ONE | 2015
Rehana Qureshi; Onur Yildirim; Adeline Gasser; Christine Basmadjian; Qian Zhao; Jean-Philippe Wilmet; Laurent Désaubry; Canan G. Nebigil
Aims The clinical use of doxorubicin for the treatment of cancer is limited by its cardiotoxicity. Flavaglines are natural products that have both potent anticancer and cardioprotective properties. A synthetic analog of flavaglines, FL3, efficiently protects mice from the cardiotoxicity of doxorubicin. The mechanism underlying this cardioprotective effect has yet to be elucidated. Methods and Results Here, we show that FL3 binds to the scaffold proteins prohibitins (PHBs) and thus promotes their translocation to mitochondria in the H9c2 cardiomyocytes. FL3 induces heterodimerization of PHB1 with STAT3, thereby ensuring cardioprotection from doxorubicin toxicity. This interaction is associated with phosphorylation of STAT3. A JAK2 inhibitor, WP1066, suppresses both the phosphorylation of STAT3 and the protective effect of FL3 in cardiomyocytes. The involvement of PHBs in the FL3-mediated cardioprotection was confirmed by means of small interfering RNAs (siRNAs) targeting PHB1 and PHB2. The siRNA knockdown of PHBs inhibits both phosphorylation of STAT3 and the cardioprotective effect of FL3. Conclusion Activation of mitochondrial STAT3/PHB1 complex by PHB ligands may be a new strategy against doxorubicin-induced cardiotoxicity and possibly other cardiac problems.
PLOS ONE | 2015
Maxime G. Blanchard; Jeroen H. F. de Baaij; Sjoerd Verkaart; Anke L.L. Lameris; Christine Basmadjian; Qian Zhao; Laurent Désaubry; René J. M. Bindels; Joost G. J. Hoenderop
Magnesium (Mg2+) is essential for enzymatic activity, brain function and muscle contraction. Blood Mg2+ concentrations are tightly regulated between 0.7 and 1.1 mM by Mg2+ (re)absorption in kidney and intestine. The apical entry of Mg2+ in (re)absorbing epithelial cells is mediated by the transient receptor potential melastatin type 6 (TRPM6) ion channel. Here, flavaglines are described as a novel class of stimulatory compounds for TRPM6 activity. Flavaglines are a group of natural and synthetic compounds that target the ubiquitously expressed prohibitins and thereby affect cellular signaling. By whole-cell patch clamp analyses, it was demonstrated that nanomolar concentrations of flavaglines increases TRPM6 activity by ∼2 fold. The stimulatory effects were dependent on the presence of the alpha-kinase domain of TRPM6, but did not require its phosphotransferase activity. Interestingly, it was observed that two natural occurring TRPM6 mutants with impaired insulin-sensitivity, TRPM6-p.Val1393Ile and TRPM6-p.Lys1584Glu, are not sensitive to flavagline stimulation. In conclusion, we have identified flavaglines as potent activators of TRPM6 activity. Our results suggest that flavaglines stimulate TRPM6 via the insulin receptor signaling pathway.
Inflammatory Bowel Diseases | 2016
Jie Han; Qian Zhao; Christine Basmadjian; Laurent Désaubry; Arianne L. Theiss
Background:Flavaglines are a family of natural compounds shown to have anti-inflammatory and cytoprotective effects in neurons and cardiomyocytes. Flavaglines target prohibitins as ligands, which are scaffold proteins that regulate mitochondrial function, cell survival, and transcription. This study tested the therapeutic potential of flavaglines to promote intestinal epithelial cell homeostasis and to protect against a model of experimental colitis in which inflammation is driven by epithelial ulceration. Methods:Survival and homeostasis of Caco2-BBE and IEC-6 intestinal epithelial cell lines were measured during treatment with the flavaglines FL3 or FL37 alone and in combination with the proinflammatory cytokines tumor necrosis factor (TNF) &agr; and interferon &ggr;. Wild-type mice were intraperitoneally injected with 0.1 mg/kg FL3 or vehicle once daily for 4 days during dextran sodium sulfate–induced colitis to test the in vivo anti-inflammatory effect of FL3. Results:FL3 and FL37 increased basal Caco2-BBE and IEC-6 cell viability, decreased apoptosis, and decreased epithelial monolayer permeability. FL3 and FL37 inhibited TNF&agr;- and interferon &ggr;–induced nuclear factor kappa B and Cox2 expression, apoptosis, and increased permeability in Caco2-BBE cells. FL3 and FL37 protected against TNF&agr;-induced mitochondrial superoxide generation by preserving respiratory chain complex I activity and prohibitin expression. p38-MAPK activation was essential for the protective effect of FL3 and FL37 on barrier permeability and mitochondrial-derived reactive oxygen species production during TNF&agr; treatment. Mice administered FL3 during dextran sodium sulfate colitis exhibited increased colonic prohibitin expression and p38-MAPK activation, preserved barrier function, and less inflammation. Conclusions:These results suggest that flavaglines exhibit therapeutic potential against colitis and preserve intestinal epithelial cell survival, mitochondrial function, and barrier integrity.
Beilstein Journal of Organic Chemistry | 2015
Christine Basmadjian; Fan Zhang; Laurent Désaubry
Summary The dehydration and subsequent cyclization reactions of 1-styrylpropargyl alcohols was examined. In the course of these studies, numerous scaffolds were synthesized, including a furan, a cyclopentenone, an acyclic enone and even a naphthalenone. The diversity of these structural motifs lies in novel cascades of reactions originating from a common carbocationic manifold.
Tetrahedron Letters | 2015
Christine Basmadjian; Qian Zhao; Laurent Désaubry
Bioactive Natural Products : Chemistry and Biology | 2015
Christine Basmadjian; Qian Zhao; Armand de Gramont; Maria Serova; Sandrine Faivre; Eric Raymond; Stéphan Vagner; Caroline Robert; Canan G. Nebigil; Laurent Désaubry