Christine Bernsmeier
King's College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christine Bernsmeier.
Journal of Hepatology | 2016
Fin Stolze Larsen; Lars E. Schmidt; Christine Bernsmeier; Allan Rasmussen; Helena Isoniemi; Vishal Patel; E. Triantafyllou; William Bernal; Georg Auzinger; Debbie L. Shawcross; Martin Eefsen; Jens Otto Clemmesen; Krister Höckerstedt; Hans-Jorgen Frederiksen; Bent Adel Hansen; Charalambos Gustav Antoniades; Julia Wendon
BACKGROUND & AIMS Acute liver failure (ALF) often results in cardiovascular instability, renal failure, brain oedema and death either due to irreversible shock, cerebral herniation or development of multiple organ failure. High-volume plasma exchange (HVP), defined as exchange of 8-12 or 15% of ideal body weight with fresh frozen plasma in case series improves systemic, cerebral and splanchnic parameters. METHODS In this prospective, randomised, controlled, multicentre trial we randomly assigned 182 patients with ALF to receive either standard medical therapy (SMT; 90 patients) or SMT plus HVP for three days (92 patients). The baseline characteristics of the groups were similar. The primary endpoint was liver transplantation-free survival during hospital stay. Secondary-endpoints included survival after liver transplantation with or without HVP with intention-to-treat analysis. A proof-of-principle study evaluating the effect of HVP on the immune cell function was also undertaken. RESULTS For the entire patient population, overall hospital survival was 58.7% for patients treated with HVP vs. 47.8% for the control group (hazard ratio (HR), with stratification for liver transplantation: 0.56; 95% confidence interval (CI), 0.36-0.86; p=0.0083). HVP prior to transplantation did not improve survival compared with patients who received SMT alone (CI 0.37 to 3.98; p=0.75). The incidence of severe adverse events was similar in the two groups. Systemic inflammatory response syndrome (SIRS) and sequential organ failure assessment (SOFA) scores fell in the treated group compared to control group, over the study period (p<0.001). CONCLUSIONS Treatment with HVP improves outcome in patients with ALF by increasing liver transplant-free survival. This is attributable to attenuation of innate immune activation and amelioration of multi-organ dysfunction.
Hepatology | 2014
Charalambos Gustav Antoniades; Wafa Khamri; R.D. Abeles; Leonie S. Taams; E. Triantafyllou; L. Possamai; Christine Bernsmeier; Ragai R. Mitry; Alistair O'Brien; Derek Gilroy; Robert Goldin; Michael A. Heneghan; Nigel Heaton; Wayel Jassem; William Bernal; Diego Vergani; Yun Ma; Alberto Quaglia; Julia Wendon; Mark Thursz
Acetaminophen‐induced acute liver failure (AALF) is characterized both by activation of innate immune responses and susceptibility to sepsis. Circulating monocytes and hepatic macrophages are central mediators of inflammatory responses and tissue repair processes during human AALF. Secretory leukocyte protease inhibitor (SLPI) modulates monocyte/macrophage function through inhibition of nuclear factor kappa B (NF‐κB) signaling. The aims of this study were to establish the role of SLPI in AALF. Circulating levels of SLPI, monocyte cluster of differentiation 163 (CD163), human leukocyte antigen‐DR (HLA‐DR), and lipopolysaccharide (LPS)‐stimulated levels of NF‐κBp65, tumor necrosis factor alpha (TNF‐α) and interleukin (IL)‐6 were determined in patients with AALF, chronic liver disease, and healthy controls. Immunohistochemistry and multispectral imaging of AALF explant tissue determined the cellular sources of SLPI and hepatic macrophage phenotype. The phenotype and function of monocytes and macrophages was determined following culture with recombinant human (rh)‐SLPI, liver homogenates, and plasma derived from AALF patients in the presence and absence of antihuman (α)SLPI. Hepatic and circulatory concentrations of SLPI were elevated in AALF and immunohistochemistry revealed SLPI expression in biliary epithelial cells and within hepatic macrophages (h‐mψ) in areas of necrosis. H‐mψ and circulating monocytes in AALF exhibited an anti‐inflammatory phenotype and functional characteristics; typified by reductions in NF‐κBp65, TNF‐α, and IL‐6 and preserved IL‐10 secretion following LPS challenge. Culture of healthy monocytes with AALF liver homogenates, plasma, or rhSLPI induced monocytes with strikingly similar anti‐inflammatory characteristics which were reversed by inhibiting the activity of SLPI. Conclusion: SLPI is a pivotal mediator of anti‐inflammatory responses in AALF through modulation of monocyte/macrophage function, which may account for the susceptibility to sepsis in AALF. (Hepatology 2014;59:1564‐1576)
PLOS ONE | 2014
Christine Bernsmeier; Anne Christin Meyer-Gerspach; Lea S. Blaser; Lia Jeker; Robert E. Steinert; Markus H. Heim; Christoph Beglinger
Background & Aims The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are gastrointestinal peptide hormones regulating postprandial insulin release from pancreatic β-cells. GLP-1 agonism is a treatment strategy in Type 2 diabetes and is evaluated in Non-alcoholic fatty liver disease (NAFLD). However, the role of incretins in its pathophysiology is insufficiently understood. Studies in mice suggest improvement of hepatic steatosis by GLP-1 agonism. We determined the secretion of incretins after oral glucose administration in non-diabetic NAFLD patients. Methods N = 52 patients (n = 16 NAFLD and n = 36 Non-alcoholic steatohepatitis (NASH) patients) and n = 50 matched healthy controls were included. Standardized oral glucose tolerance test was performed. Glucose, insulin, glucagon, GLP-1 and GIP plasma levels were measured sequentially for 120 minutes after glucose administration. Results Glucose induced GLP-1 secretion was significantly decreased in patients compared to controls (p<0.001). In contrast, GIP secretion was unchanged. There was no difference in GLP-1 and GIP secretion between NAFLD and NASH subgroups. All patients were insulin resistant, however HOMA2-IR was highest in the NASH subgroup. Fasting and glucose-induced insulin secretion was higher in NAFLD and NASH compared to controls, while the glucose lowering effect was diminished. Concomitantly, fasting glucagon secretion was significantly elevated in NAFLD and NASH. Conclusions Glucose-induced GLP-1 secretion is deficient in patients with NAFLD and NASH. GIP secretion is contrarily preserved. Insulin resistance, with hyperinsulinemia and hyperglucagonemia, is present in all patients, and is more severe in NASH compared to NAFLD. These pathophysiologic findings endorse the current evaluation of GLP-1 agonism for the treatment of NAFLD.
PLOS ONE | 2010
Magdalena Filipowicz; Christine Bernsmeier; Luigi Terracciano; Francois H.T. Duong; Markus H. Heim
Background/Aims Treatment of chronic hepatitis C (CHC) with pegylated interferon α (pegIFNα) and ribavirin results in a sustained response in approximately half of patients. Viral interference with IFNα signal transduction through the Jak-STAT pathway might be an important factor underlying treatment failure. S-adenosyl-L-methionine (SAMe) and betaine potentiate IFNα signaling in cultured cells that express hepatitis C virus (HCV) proteins, and enhance the inhibitory effect of IFNα on HCV replicons. We have performed a clinical study with the aim to evaluate efficacy and safety of the addition of SAMe and betaine to treatment of CHC with pegIFNα/ribavirin. Methods In this open-label pilot study, 29 patients with CHC who failed previous therapy with (peg)IFNα/ribavirin were treated with SAMe, betaine, pegIFNα2b and ribavirin. Treatment duration was 6 or 12 months, depending on genotype, and the protocol comprised a stopping rule at week 12 if early virological response (EVR) was not achieved. Virological and biochemical response and safety were assessed throughout the treatment. Results 29 patients were enrolled and treated according to the study protocol. 79% of the patients were infected with genotype 1, 72% had advanced fibrosis, 76% had previously received pegIFNα/ribavirin, and only 14% achieved EVR to the previous treatment. When treated with the study medications, 17 patients (59%) showed an EVR, only 3 (10%) however achieved a sustained virological response (SVR). SAMe and betaine were found to be safe when used with pegIFNα/ribavirin. Conclusion The addition of SAMe and betaine to pegIFNα/ribavirin improves early virological response in CHC. Trial Registration ClinicalTrials.gov NCT00310336
Gut | 2017
N. Vergis; Wafa Khamri; Kylie Beale; Fouzia Sadiq; Mina Olga Aletrari; Stephen R. Atkinson; Christine Bernsmeier; L. Possamai; G. Petts; Jennifer Ryan; R.D. Abeles; Sarah E. James; Matthew R. Foxton; Brian Hogan; Graham R. Foster; Alastair O'Brien; Yun Ma; Debbie L. Shawcross; Julia Wendon; C.G. Antoniades; Mark Thursz
Objective In order to explain the increased susceptibility to serious infection in alcoholic hepatitis, we evaluated monocyte phagocytosis, aberrations of associated signalling pathways and their reversibility, and whether phagocytic defects could predict subsequent infection. Design Monocytes were identified from blood samples of 42 patients with severe alcoholic hepatitis using monoclonal antibody to CD14. Phagocytosis and monocyte oxidative burst (MOB) were measured ex vivo using flow cytometry, luminometry and bacterial killing assays. Defects were related to the subsequent development of infection. Intracellular signalling pathways were investigated using western blotting and PCR. Interferon-γ (IFN-γ) was evaluated for its therapeutic potential in reversing phagocytic defects. Paired longitudinal samples were used to evaluate the effect of in vivo prednisolone therapy. Results MOB, production of superoxide and bacterial killing in response to Escherichia coli were markedly impaired in patients with alcoholic hepatitis. Pretreatment MOB predicted development of infection within two weeks with sensitivity and specificity that were superior to available clinical markers. Accordingly, defective MOB was associated with death at 28 and 90 days. Expression of the gp91phox subunit of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was reduced in patients with alcoholic hepatitis demonstrating defective MOB. Monocytes were refractory to IFN-γ stimulation and showed high levels of a negative regulator of cytokine signalling, suppressor of cytokine signalling-1. MOB was unaffected by 7 days in vivo prednisolone therapy. Conclusions Monocyte oxidative burst and bacterial killing is impaired in alcoholic hepatitis while bacterial uptake by phagocytosis is preserved. Defective MOB is associated with reduced expression of NADPH oxidase in these patients and predicts the development of infection and death.
PLOS ONE | 2015
Christine Bernsmeier; Diego M. Weisskopf; Marlon O. Pflueger; Jan Mosimann; Benedetta Campana; Luigi Terracciano; Christoph Beglinger; Markus H. Heim; Christian Cajochen
Background & Aims Sleep disturbance is associated with the development of obesity, diabetes and hepatic steatosis in murine models. Hepatic triglyceride accumulation oscillates in a circadian rhythm regulated by clock genes, light-dark cycle and feeding time in mice. The role of the sleep-wake cycle in the pathogenesis of human non-alcoholic fatty liver disease (NAFLD) is indeterminate. We sought to detail sleep characteristics, daytime sleepiness and meal times in relation to disease severity in patients with NAFLD. Methods Basic Sleep duration and latency, daytime sleepiness (Epworth sleepiness scale), Pittsburgh sleep quality index, positive and negative affect scale, Munich Chronotype Questionnaire and an eating habit questionnaire were assessed in 46 patients with biopsy-proven NAFLD and 22 healthy controls, and correlated with biochemical and histological parameters. Results In NAFLD compared to healthy controls, time to fall asleep was vastly prolonged (26.9 vs. 9.8 min., p = 0.0176) and sleep duration was shortened (6.3 vs. 7.2 hours, p = 0.0149). Sleep quality was poor (Pittsburgh sleep quality index 8.2 vs. 4.7, p = 0.0074) and correlated with changes in affect. Meal frequency was shifted towards night-times (p = 0.001). In NAFLD but not controls, daytime sleepiness significantly correlated with liver enzymes (ALAT [r = 0.44, p = 0.0029], ASAT [r = 0.46, p = 0.0017]) and insulin resistance (HOMA-IR [r = 0.5, p = 0.0009]) independent of cirrhosis. In patients with fibrosis, daytime sleepiness correlated with the degree of fibrosis (r = 0.364, p = 0.019). Conclusions In NAFLD sleep duration was shortened, sleep onset was delayed and sleep quality poor. Food-intake was shifted towards the night. Daytime sleepiness was positively linked to biochemical and histologic surrogates of disease severity. The data may indicate a role for sleep-wake cycle regulation and timing of food-intake in the pathogenesis of human NAFLD as suggested from murine models.
Gut | 2018
Evangelos Triantafyllou; Oltin Tiberiu Pop; L. Possamai; Annika Wilhelm; Evaggelia Liaskou; Arjuna Singanayagam; Christine Bernsmeier; Wafa Khamri; G. Petts; Rebecca Dargue; S. Davies; Joseph Tickle; Muhammed Yuksel; Vishal Patel; R.D. Abeles; Zania Stamataki; Stuart M. Curbishley; Yun Ma; Ian D. Wilson; Muireann Coen; Kevin J. Woollard; Alberto Quaglia; Julia Wendon; Mark Thursz; David H. Adams; Chris J. Weston; C.G. Antoniades
Objective Acute liver failure (ALF) is characterised by overwhelming hepatocyte death and liver inflammation with massive infiltration of myeloid cells in necrotic areas. The mechanisms underlying resolution of acute hepatic inflammation are largely unknown. Here, we aimed to investigate the impact of Mer tyrosine kinase (MerTK) during ALF and also examine how the microenvironmental mediator, secretory leucocyte protease inhibitor (SLPI), governs this response. Design Flow cytometry, immunohistochemistry, confocal imaging and gene expression analyses determined the phenotype, functional/transcriptomic profile and tissue topography of MerTK+ monocytes/macrophages in ALF, healthy and disease controls. The temporal evolution of macrophage MerTK expression and its impact on resolution was examined in APAP-induced acute liver injury using wild-type (WT) and Mer-deficient (Mer−/−) mice. SLPI effects on hepatic myeloid cells were determined in vitro and in vivo using APAP-treated WT mice. Results We demonstrate a significant expansion of resolution-like MerTK+HLA-DRhigh cells in circulatory and tissue compartments of patients with ALF. Compared with WT mice which show an increase of MerTK+MHCIIhigh macrophages during the resolution phase in ALF, APAP-treated Mer−/− mice exhibit persistent liver injury and inflammation, characterised by a decreased proportion of resident Kupffer cells and increased number of neutrophils. Both in vitro and in APAP-treated mice, SLPI reprogrammes myeloid cells towards resolution responses through induction of a MerTK+HLA-DRhigh phenotype which promotes neutrophil apoptosis and their subsequent clearance. Conclusions We identify a hepatoprotective, MerTK+, macrophage phenotype that evolves during the resolution phase following ALF and represents a novel immunotherapeutic target to promote resolution responses following acute liver injury.
Gut | 2018
Christine Bernsmeier; Evangelos Triantafyllou; Robert Brenig; Fanny Lebosse; Arjuna Singanayagam; Vishal Patel; Oltin Tiberiu Pop; Wafa Khamri; R Nathwani; R. Tidswell; Chris J. Weston; David H. Adams; Mark Thursz; Julia Wendon; C.G. Antoniades
Objective Immune paresis in patients with acute-on-chronic liver failure (ACLF) accounts for infection susceptibility and increased mortality. Immunosuppressive mononuclear CD14+HLA-DR− myeloid-derived suppressor cells (M-MDSCs) have recently been identified to quell antimicrobial responses in immune-mediated diseases. We sought to delineate the function and derivation of M-MDSC in patients with ACLF, and explore potential targets to augment antimicrobial responses. Design Patients with ACLF (n=41) were compared with healthy subjects (n=25) and patients with cirrhosis (n=22) or acute liver failure (n=30). CD14+CD15−CD11b+HLA-DR− cells were identified as per definition of M-MDSC and detailed immunophenotypic analyses were performed. Suppression of T cell activation was assessed by mixed lymphocyte reaction. Assessment of innate immune function included cytokine expression in response to Toll-like receptor (TLR-2, TLR-4 and TLR-9) stimulation and phagocytosis assays using flow cytometry and live cell imaging-based techniques. Results Circulating CD14+CD15−CD11b+HLA-DR− M-MDSCs were markedly expanded in patients with ACLF (55% of CD14+ cells). M-MDSC displayed immunosuppressive properties, significantly decreasing T cell proliferation (p=0.01), producing less tumour necrosis factor-alpha/interleukin-6 in response to TLR stimulation (all p<0.01), and reduced bacterial uptake of Escherichia coli (p<0.001). Persistently low expression of HLA-DR during disease evolution was linked to secondary infection and 28-day mortality. Recurrent TLR-2 and TLR-4 stimulation expanded M-MDSC in vitro. By contrast, TLR-3 agonism reconstituted HLA-DR expression and innate immune function ex vivo. Conclusion Immunosuppressive CD14+HLA-DR− M-MDSCs are expanded in patients with ACLF. They were depicted by suppressing T cell function, attenuated antimicrobial innate immune responses, linked to secondary infection, disease severity and prognosis. TLR-3 agonism reversed M-MDSC expansion and innate immune function and merits further evaluation as potential immunotherapeutic agent.
Critical Care Medicine | 2016
Godhev K. Manakkat Vijay; Jennifer Ryan; R.D. Abeles; Stephen Ramage; Vishal Patel; Christine Bernsmeier; A. Riva; Mark McPhail; Thomas H. Tranah; L.J. Markwick; Nicholas Taylor; William Bernal; Georg Auzinger; Chris Willars; S. Chokshi; Julia Wendon; Yun Ma; Debbie L. Shawcross
Objectives:There is a marked propensity for patients with acetaminophen-induced acute liver failure to develop sepsis, which may culminate in multiple organ failure and death. Toll-like receptors sense pathogens and induce inflammatory responses, but whether this is protective or detrimental in acetaminophen-induced acute liver failure remains unknown. Design, Setting, and Patients:We assessed Toll-like receptor expression on circulating neutrophils and their function in 24 patients with acetaminophen-induced acute liver failure and compared with 10 healthy controls. Interventions:Neutrophil Toll-like receptor 2, -4, and -9 expression and cytokine production and function were studied ex vivo at baseline and following stimulation with lipopolysaccharide, oligodeoxynucleotides, ammonium chloride, and interleukin-8. To examine the influence of acetaminophen-induced acute liver failure plasma and endogenous DNA on Toll-like receptors-9 expression, healthy neutrophils were incubated with acetaminophen-induced acute liver failure plasma with and without deoxyribonuclease-I. Measurements and Main Results:Circulating neutrophil Toll-like receptor 9 expression was increased in acetaminophen-induced acute liver failure on day 1 compared with healthy controls (p = 0.0002), whereas Toll-like receptor 4 expression was decreased compared with healthy controls (p < 0.0001). Toll-like receptor 2 expression was unchanged. Neutrophil phagocytic activity was decreased, and spontaneous oxidative burst increased in all patients with acetaminophen-induced acute liver failure compared with healthy controls (p < 0.0001). Neutrophil Toll-like receptor 9 expression correlated with plasma interleukin-8 and peak ammonia concentration (r = 0.6; p < 0.05) and increased with severity of hepatic encephalopathy (grade 0–2 vs 3/4) and systemic inflammatory response syndrome score (0–1 vs 2–4) (p < 0.05). Those patients with advanced hepatic encephalopathy (grade 3/4) or high systemic inflammatory response syndrome score (2–4) on day 1 had higher neutrophil Toll-like receptor 9 expression, arterial ammonia concentration, and plasma interleukin-8 associated with neutrophil exhaustion. Healthy neutrophil Toll-like receptor 9 expression increased upon stimulation with acetaminophen-induced acute liver failure plasma, which was abrogated by preincubation with deoxyribonuclease-I. Intracellular Toll-like receptor 9 was induced by costimulation with interleukin-8 and ammonia. Conclusion:These data point to neutrophil Toll-like receptor 9 expression in acetaminophen-induced acute liver failure being mediated both by circulating endogenous DNA as well as ammonia and interleukin-8 in a synergistic manner inducing systemic inflammation, neutrophil exhaustion, and exacerbating hepatic encephalopathy.
Gastroenterology | 2017
Wafa Khamri; R.D. Abeles; Tie Zheng Hou; Amy E. Anderson; Ahmed El-Masry; E. Triantafyllou; Christine Bernsmeier; Fin Stolze Larsen; Arjuna Singanayagam; Nobuaki Kudo; L. Possamai; Fanny Lebosse; Georg Auzinger; William Bernal; C Willars; Chris J. Weston; Giovanna Lombardi; Julia Wendon; Mark Thursz; C.G. Antoniades
Background & Aims Patients with acute liver failure (ALF) have defects in innate immune responses to microbes (immune paresis) and are susceptible to sepsis. Cytotoxic T-lymphocyte−associated protein 4 (CTLA4), which interacts with the membrane receptor B7 (also called CD80 and CD86), is a negative regulator of T-cell activation. We collected T cells from patients with ALF and investigated whether inhibitory signals down-regulate adaptive immune responses in patients with ALF. Methods We collected peripheral blood mononuclear cells from patients with ALF and controls from September 2013 through September 2015 (45 patients with ALF, 20 patients with acute-on-chronic liver failure, 15 patients with cirrhosis with no evidence of acute decompensation, 20 patients with septic shock but no cirrhosis or liver disease, and 20 healthy individuals). Circulating CD4+ T cells were isolated and analyzed by flow cytometry. CD4+ T cells were incubated with antigen, or agonist to CD3 and dendritic cells, with or without antibody against CTLA4; T-cell proliferation and protein expression were quantified. We measured levels of soluble B7 molecules in supernatants of isolated primary hepatocytes, hepatic sinusoidal endothelial cells, and biliary epithelial cells from healthy or diseased liver tissues. We also measured levels of soluble B7 serum samples from patients and controls, and mice with acetaminophen-induced liver injury using enzyme-linked immunosorbent assays. Results Peripheral blood samples from patients with ALF had a higher proportion of CD4+ CTLA4+ T cells than controls; patients with infections had the highest proportions. CD4+ T cells from patients with ALF had a reduced proliferative response to antigen or CD3 stimulation compared to cells from controls; incubation of CD4+ T cells from patients with ALF with an antibody against CTLA4 increased their proliferative response to antigen and to CD3 stimulation, to the same levels as cells from controls. CD4+ T cells from controls up-regulated expression of CTLA4 after 24−48 hours culture with sera from patients with ALF; these sera were found to have increased concentrations of soluble B7 compared to sera from controls. Necrotic human primary hepatocytes exposed to acetaminophen, but not hepatic sinusoidal endothelial cells and biliary epithelial cells from patients with ALF, secreted high levels of soluble B7. Sera from mice with acetaminophen-induced liver injury contained high levels of soluble B7 compared to sera from mice without liver injury. Plasma exchange reduced circulating levels of soluble B7 in patients with ALF and expression of CTLA4 on T cells. Conclusions Peripheral CD4+ T cells from patients with ALF have increased expression of CTLA4 compared to individuals without ALF; these cells have a reduced response to antigen and CD3 stimulation. We found sera of patients with ALF and from mice with liver injury to have high concentrations of soluble B7, which up-regulates CTLA4 expression by T cells and reduces their response to antigen. Plasma exchange reduces levels of B7 in sera from patients with ALF and might be used to restore antimicrobial responses to patients.