Christine Blancher
Wellcome Trust Centre for Human Genetics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christine Blancher.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Marc-Emmanuel Dumas; Richard H. Barton; Ayo Toye; Olivier Cloarec; Christine Blancher; Alice R. Rothwell; Jane Fearnside; Roger Tatoud; Veronique Blanc; John C. Lindon; Steve Chappell Mitchell; Elaine Holmes; Mark McCarthy; James Scott; Dominique Gauguier; Jeremy K. Nicholson
Here, we study the intricate relationship between gut microbiota and host cometabolic phenotypes associated with dietary-induced impaired glucose homeostasis and nonalcoholic fatty liver disease (NAFLD) in a mouse strain (129S6) known to be susceptible to these disease traits, using plasma and urine metabotyping, achieved by 1H NMR spectroscopy. Multivariate statistical modeling of the spectra shows that the genetic predisposition of the 129S6 mouse to impaired glucose homeostasis and NAFLD is associated with disruptions of choline metabolism, i.e., low circulating levels of plasma phosphatidylcholine and high urinary excretion of methylamines (dimethylamine, trimethylamine, and trimethylamine-N-oxide), coprocessed by symbiotic gut microbiota and mammalian enzyme systems. Conversion of choline into methylamines by microbiota in strain 129S6 on a high-fat diet reduces the bioavailability of choline and mimics the effect of choline-deficient diets, causing NAFLD. These data also indicate that gut microbiota may play an active role in the development of insulin resistance.
Journal of Biological Chemistry | 2009
David R. Mole; Christine Blancher; Richard R. Copley; Patrick J. Pollard; Jonathan M. Gleadle; Jiannis Ragoussis; Peter J. Ratcliffe
Hypoxia-inducible factor (HIF) controls an extensive range of adaptive responses to hypoxia. To better understand this transcriptional cascade we performed genome-wide chromatin immunoprecipitation using antibodies to two major HIF-α subunits, and correlated the results with genome-wide transcript profiling. Within a tiled promoter array we identified 546 and 143 sequences that bound, respectively, to HIF-1α or HIF-2α at high stringency. Analysis of these sequences confirmed an identical core binding motif for HIF-1α and HIF-2α (RCGTG) but demonstrated that binding to this motif was highly selective, with binding enriched at distinct regions both upstream and downstream of the transcriptional start. Comparison of HIF-promoter binding data with bidirectional HIF-dependent changes in transcript expression indicated that whereas a substantial proportion of positive responses (>20% across all significantly regulated genes) are direct, HIF-dependent gene suppression is almost entirely indirect. Comparison of HIF-1α- versus HIF-2α-binding sites revealed that whereas some loci bound HIF-1α in isolation, many bound both isoforms with similar affinity. Despite high-affinity binding to multiple promoters, HIF-2α contributed to few, if any, of the transcriptional responses to acute hypoxia at these loci. Given emerging evidence for biologically distinct functions of HIF-1α versus HIF-2α understanding the mechanisms restricting HIF-2α activity will be of interest.
PLOS ONE | 2010
Elena Favaro; Robert McCormick; Harriet E. Gee; Christine Blancher; Meredith E. Crosby; Cecilia M. Devlin; Christopher Blick; Francesca M. Buffa; Borivoj Vojnovic; Ricardo Pires das Neves; Peter M. Glazer; Francisco J. Iborra; Mircea Ivan; Jiannis Ragoussis; Adrian L. Harris
Background Hypoxia in cancers results in the upregulation of hypoxia inducible factor 1 (HIF-1) and a microRNA, hsa-miR-210 (miR-210) which is associated with a poor prognosis. Methods and Findings In human cancer cell lines and tumours, we found that miR-210 targets the mitochondrial iron sulfur scaffold protein ISCU, required for assembly of iron-sulfur clusters, cofactors for key enzymes involved in the Krebs cycle, electron transport, and iron metabolism. Down regulation of ISCU was the major cause of induction of reactive oxygen species (ROS) in hypoxia. ISCU suppression reduced mitochondrial complex 1 activity and aconitase activity, caused a shift to glycolysis in normoxia and enhanced cell survival. Cancers with low ISCU had a worse prognosis. Conclusions Induction of these major hallmarks of cancer show that a single microRNA, miR-210, mediates a new mechanism of adaptation to hypoxia, by regulating mitochondrial function via iron-sulfur cluster metabolism and free radical generation.
Nature Genetics | 2007
Marc-Emmanuel Dumas; Steven P. Wilder; Marie-Thérèse Bihoreau; Richard H. Barton; Jane Fearnside; Karène Argoud; Lisa D'Amato; Robert H. Wallis; Christine Blancher; Hector C. Keun; Dorrit Baunsgaard; James Scott; Ulla G. Sidelmann; Jeremy K. Nicholson; Dominique Gauguier
Characterizing the relationships between genomic and phenotypic variation is essential to understanding disease etiology. Information-dense data sets derived from pathophysiological, proteomic and transcriptomic profiling have been applied to map quantitative trait loci (QTLs). Metabolic traits, already used in QTL studies in plants, are essential phenotypes in mammalian genetics to define disease biomarkers. Using a complex mammalian system, here we show chromosomal mapping of untargeted plasma metabolic fingerprints derived from NMR spectroscopic analysis in a cross between diabetic and control rats. We propose candidate metabolites for the most significant QTLs. Metabolite profiling in congenic strains provided evidence of QTL replication. Linkage to a gut microbial metabolite (benzoate) can be explained by deletion of a uridine diphosphate glucuronosyltransferase. Mapping metabotypic QTLs provides a practical approach to understanding genome-phenotype relationships in mammals and may uncover deeper biological complexity, as extended genome (microbiome) perturbations that affect disease processes through transgenomic effects may influence QTL detection.
The Lancet Diabetes & Endocrinology | 2015
John Chambers; Marie Loh; Benjamin Lehne; Alexander Drong; Jennifer Kriebel; Valeria Motta; Simone Wahl; Hannah R Elliott; Federica Rota; William R. Scott; Weihua Zhang; Sian-Tsung Tan; Gianluca Campanella; Marc Chadeau-Hyam; Loic Yengo; Rebecca C Richmond; Martyna Adamowicz-Brice; Uzma Afzal; Kiymet Bozaoglu; Zuan Yu Mok; Hong Kiat Ng; François Pattou; Holger Prokisch; Michelle Ann Rozario; Letizia Tarantini; James Abbott; Mika Ala-Korpela; Benedetta Albetti; Ole Ammerpohl; Pier Alberto Bertazzi
BACKGROUND Indian Asians, who make up a quarter of the worlds population, are at high risk of developing type 2 diabetes. We investigated whether DNA methylation is associated with future type 2 diabetes incidence in Indian Asians and whether differences in methylation patterns between Indian Asians and Europeans are associated with, and could be used to predict, differences in the magnitude of risk of developing type 2 diabetes. METHODS We did a nested case-control study of DNA methylation in Indian Asians and Europeans with incident type 2 diabetes who were identified from the 8-year follow-up of 25 372 participants in the London Life Sciences Prospective Population (LOLIPOP) study. Patients were recruited between May 1, 2002, and Sept 12, 2008. We did epigenome-wide association analysis using samples from Indian Asians with incident type 2 diabetes and age-matched and sex-matched Indian Asian controls, followed by replication testing of top-ranking signals in Europeans. For both discovery and replication, DNA methylation was measured in the baseline blood sample, which was collected before the onset of type 2 diabetes. Epigenome-wide significance was set at p<1 × 10(-7). We compared methylation levels between Indian Asian and European controls without type 2 diabetes at baseline to estimate the potential contribution of DNA methylation to increased risk of future type 2 diabetes incidence among Indian Asians. FINDINGS 1608 (11·9%) of 13 535 Indian Asians and 306 (4·3%) of 7066 Europeans developed type 2 diabetes over a mean of 8·5 years (SD 1·8) of follow-up. The age-adjusted and sex-adjusted incidence of type 2 diabetes was 3·1 times (95% CI 2·8-3·6; p<0·0001) higher among Indian Asians than among Europeans, and remained 2·5 times (2·1-2·9; p<0·0001) higher after adjustment for adiposity, physical activity, family history of type 2 diabetes, and baseline glycaemic measures. The mean absolute difference in methylation level between type 2 diabetes cases and controls ranged from 0·5% (SD 0·1) to 1·1% (0·2). Methylation markers at five loci were associated with future type 2 diabetes incidence; the relative risk per 1% increase in methylation was 1·09 (95% CI 1·07-1·11; p=1·3 × 10(-17)) for ABCG1, 0·94 (0·92-0·95; p=4·2 × 10(-11)) for PHOSPHO1, 0·94 (0·92-0·96; p=1·4 × 10(-9)) for SOCS3, 1·07 (1·04-1·09; p=2·1 × 10(-10)) for SREBF1, and 0·92 (0·90-0·94; p=1·2 × 10(-17)) for TXNIP. A methylation score combining results for the five loci was associated with future type 2 diabetes incidence (relative risk quartile 4 vs quartile 1 3·51, 95% CI 2·79-4·42; p=1·3 × 10(-26)), and was independent of established risk factors. Methylation score was higher among Indian Asians than Europeans (p=1 × 10(-34)). INTERPRETATION DNA methylation might provide new insights into the pathways underlying type 2 diabetes and offer new opportunities for risk stratification and prevention of type 2 diabetes among Indian Asians. FUNDING The European Union, the UK National Institute for Health Research, the Wellcome Trust, the UK Medical Research Council, Action on Hearing Loss, the UK Biotechnology and Biological Sciences Research Council, the Oak Foundation, the Economic and Social Research Council, Helmholtz Zentrum Munchen, the German Research Center for Environmental Health, the German Federal Ministry of Education and Research, the German Center for Diabetes Research, the Munich Center for Health Sciences, the Ministry of Science and Research of the State of North Rhine-Westphalia, and the German Federal Ministry of Health.
PLOS ONE | 2008
Jane Fearnside; Marc-Emmanuel Dumas; Alice R. Rothwell; Steven P. Wilder; Olivier Cloarec; Ayo Toye; Christine Blancher; Elaine Holmes; Roger Tatoud; Richard H. Barton; James Scott; Jeremy K. Nicholson; Dominique Gauguier
Insulin resistance plays a central role in type 2 diabetes and obesity, which develop as a consequence of genetic and environmental factors. Dietary changes including high fat diet (HFD) feeding promotes insulin resistance in rodent models which present useful systems for studying interactions between genetic background and environmental influences contributing to disease susceptibility and progression. We applied a combination of classical physiological, biochemical and hormonal studies and plasma 1H NMR spectroscopy-based metabonomics to characterize the phenotypic and metabotypic consequences of HFD (40%) feeding in inbred mouse strains (C57BL/6, 129S6, BALB/c, DBA/2, C3H) frequently used in genetic studies. We showed the wide range of phenotypic and metabonomic adaptations to HFD across the five strains and the increased nutrigenomic predisposition of 129S6 and C57BL/6 to insulin resistance and obesity relative to the other strains. In contrast mice of the BALB/c and DBA/2 strains showed relative resistance to HFD-induced glucose intolerance and obesity. Hierarchical metabonomic clustering derived from 1H NMR spectral data of the strains provided a phylometabonomic classification of strain-specific metabolic features and differential responses to HFD which closely match SNP-based phylogenetic relationships between strains. Our results support the concept of genomic clustering of functionally related genes and provide important information for defining biological markers predicting spontaneous susceptibility to insulin resistance and pathological adaptations to fat feeding.
Nature Genetics | 2012
Nick Orr; Alina Lemnrau; Rosie Cooke; Olivia Fletcher; Katarzyna Tomczyk; Michael P. Jones; Nichola Johnson; Christopher J. Lord; Costas Mitsopoulos; Marketa Zvelebil; Simon S. McDade; Gemma Buck; Christine Blancher; Alison H. Trainer; Paul A. James; Stig E. Bojesen; Susanne Bokmand; Heli Nevanlinna; Johanna Mattson; Eitan Friedman; Yael Laitman; Domenico Palli; Giovanna Masala; Ines Zanna; Laura Ottini; Giuseppe Giannini; Antoinette Hollestelle; Ans van den Ouweland; Srdjan Novakovic; Mateja Krajc
We conducted a genome-wide association study of male breast cancer comprising 823 cases and 2,795 controls of European ancestry, with validation in independent sample sets totaling 438 cases and 474 controls. A SNP in RAD51B at 14q24.1 was significantly associated with male breast cancer risk (P = 3.02 × 10−13; odds ratio (OR) = 1.57). We also refine association at 16q12.1 to a SNP within TOX3 (P = 3.87 × 10−15; OR = 1.50).
PLOS Genetics | 2015
Anubha Mahajan; Xueling Sim; Hui Jin Ng; Alisa K. Manning; Manuel A. Rivas; Heather M Highland; Adam E. Locke; Niels Grarup; Hae Kyung Im; Pablo Cingolani; Jason Flannick; Pierre Fontanillas; Christian Fuchsberger; Kyle J. Gaulton; Tanya M. Teslovich; N. William Rayner; Neil R. Robertson; Nicola L. Beer; Jana K. Rundle; Jette Bork-Jensen; Claes Ladenvall; Christine Blancher; David Buck; Gemma Buck; Noël P. Burtt; Stacey Gabriel; Anette P. Gjesing; Christopher J. Groves; Mette Hollensted; Jeroen R. Huyghe
Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.
PLOS ONE | 2013
Liisa Ukkola-Vuoti; Charkravarthi Kanduri; Jaana Oikkonen; Gemma Buck; Christine Blancher; Pirre Raijas; Kai Karma; Harri Lähdesmäki; Irma Järvelä
Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs) in five extended pedigrees and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was defined by combination of the scores of three music tests (COMB scores): auditory structuring ability, Seashores test for pitch and for time. Data on creativity in music (herein composing, improvising and/or arranging music) was surveyed using a web-based questionnaire. Several CNVRs containing genes that affect neurodevelopment, learning and memory were detected. A deletion at 5q31.1 covering the protocadherin-α gene cluster (Pcdha 1-9) was found co-segregating with low music test scores (COMB) in both sample sets. Pcdha is involved in neural migration, differentiation and synaptogenesis. Creativity in music was found to co-segregate with a duplication covering glucose mutarotase gene (GALM) at 2p22. GALM has influence on serotonin release and membrane trafficking of the human serotonin transporter. Interestingly, genes related to serotonergic systems have been shown to associate not only with psychiatric disorders but also with creativity and music perception. Both, Pcdha and GALM, are related to the serotonergic systems influencing cognitive and motor functions, important for music perception and practice. Finally, a 1.3 Mb duplication was identified in a subject with low COMB scores in the region previously linked with absolute pitch (AP) at 8q24. No differences in the CNV burden was detected among the high/low music test scores or creative/non-creative groups. In summary, CNVs and genes found in this study are related to cognitive functions. Our result suggests new candidate genes for music perception related traits and supports the previous results from AP study.
BMC Medical Genomics | 2009
Yaomin Hu; Pamela J. Kaisaki; Karène Argoud; Steven P. Wilder; Karin J. Wallace; Peng Y. Woon; Christine Blancher; Lise Tarnow; Per-Henrik Groop; Samy Hadjadj; Michel Marre; Hans-Henrik Parving; Martin Farrall; Roger D. Cox; Mark Lathrop; Nathalie Vionnet; Marie-Thérèse Bihoreau; Dominique Gauguier
BackgroundHyperglycaemia in diabetes mellitus (DM) alters gene expression regulation in various organs and contributes to long term vascular and renal complications. We aimed to generate novel renal genome-wide gene transcription data in rat models of diabetes in order to test the responsiveness to hyperglycaemia and renal structural changes of positional candidate genes at selected diabetic nephropathy (DN) susceptibility loci.MethodsBoth Affymetrix and Illumina technologies were used to identify significant quantitative changes in the abundance of over 15,000 transcripts in kidney of models of spontaneous (genetically determined) mild hyperglycaemia and insulin resistance (Goto-Kakizaki-GK) and experimentally induced severe hyperglycaemia (Wistar-Kyoto-WKY rats injected with streptozotocin [STZ]).ResultsDifferent patterns of transcription regulation in the two rat models of diabetes likely underlie the roles of genetic variants and hyperglycaemia severity. The impact of prolonged hyperglycaemia on gene expression changes was more profound in STZ-WKY rats than in GK rats and involved largely different sets of genes. These included genes already tested in genetic studies of DN and a large number of protein coding sequences of unknown function which can be considered as functional and, when they map to DN loci, positional candidates for DN. Further expression analysis of rat orthologs of human DN positional candidate genes provided functional annotations of known and novel genes that are responsive to hyperglycaemia and may contribute to renal functional and/or structural alterations.ConclusionCombining transcriptomics in animal models and comparative genomics provides important information to improve functional annotations of disease susceptibility loci in humans and experimental support for testing candidate genes in human genetics.