Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Böttcher is active.

Publication


Featured researches published by Christine Böttcher.


Journal of Experimental Botany | 2010

Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening

Christine Böttcher; Robert A. Keyzers; Paul K. Boss; Christopher Davies

In fleshy fruit, levels of indole-3-acetic acid (IAA), the most abundant auxin, decline towards the onset of ripening. The application of auxins to immature fruit can delay the ripening processes. However, the mechanisms by which the decrease in endogenous IAA concentrations and the maintenance of low auxin levels in maturing fruit are achieved remain elusive. The transcript of a GH3 gene (GH3-1), encoding for an IAA-amido synthetase which conjugates IAA to amino acids, was detected in grape berries (Vitis vinifera L.). GH3-1 expression increased at the onset of ripening (veraison), suggesting that it might be involved in the establishment and maintenance of low IAA concentrations in ripening berries. Furthermore, this grapevine GH3 gene, responded positively to the combined application of abscisic acid and sucrose and to ethylene, linking it to the control of ripening processes. Levels of IAA-aspartic acid (IAA-Asp), an in vitro product of recombinant GH3-1, rose after veraison and remained high during the following weeks of the ripening phase when levels of free IAA were low. A similar pattern of changes in free IAA and IAA-Asp levels was detected in developing tomatoes (Solanum lycopersicum Mill.), where low concentrations of IAA and an increase in IAA-Asp concentrations coincided with the onset of ripening in this climacteric fruit. Since IAA-Asp might be involved in IAA degradation, the GH3 catalysed formation of this conjugate at, and after, the onset of ripening could represent a common IAA inactivation mechanism in climacteric and non-climacteric fruit which enables ripening.


FEBS Journal | 2009

Plant oxylipins: Plant responses to 12-oxo-phytodienoic acid are governed by its specific structural and functional properties

Christine Böttcher; Stephan Pollmann

One of the most challenging questions in modern plant science is how plants regulate their morphological and developmental adaptation in response to changes in their biotic and abiotic environment. A comprehensive elucidation of the underlying mechanisms will help shed light on the extremely efficient strategies of plants in terms of survival and propagation. In recent years, a number of environmental stress conditions have been described as being mediated by signaling molecules of the oxylipin family. In this context, jasmonic acid, its biosynthetic precursor, 12‐oxo‐phytodienoic acid (OPDA), and also reactive electrophilic species such as phytoprostanes play pivotal roles. Although our understanding of jasmonic acid‐dependent processes and jasmonic acid signal‐transduction cascades has made considerable progress in recent years, knowledge of the regulation and mode of action of OPDA‐dependent plant responses is just emerging. This minireview focuses on recent work concerned with the elucidation of OPDA‐specific processes in plants. In this context, aspects such as the differential recruitment of OPDA, either by de novo biosynthesis or by release from cyclo‐oxylipin‐galactolipids, and the conjugation of free OPDA are discussed.


Plant Journal | 2013

The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression

Mathias Hentrich; Christine Böttcher; Petra Düchting; Youfa Cheng; Yunde Zhao; Oliver Berkowitz; Josette Masle; Joaquín Medina; Stephan Pollmann

Interactions between phytohormones play important roles in the regulation of plant growth and development, but knowledge of the networks controlling hormonal relationships, such as between oxylipins and auxins, is just emerging. Here, we report the transcriptional regulation of two Arabidopsis YUCCA genes, YUC8 and YUC9, by oxylipins. Similar to previously characterized YUCCA family members, we show that both YUC8 and YUC9 are involved in auxin biosynthesis, as demonstrated by the increased auxin contents and auxin-dependent phenotypes displayed by gain-of-function mutants as well as the significantly decreased indole-3-acetic acid (IAA) levels in yuc8 and yuc8/9 knockout lines. Gene expression data obtained by qPCR analysis and microscopic examination of promoter-reporter lines reveal an oxylipin-mediated regulation of YUC9 expression that is dependent on the COI1 signal transduction pathway. In support of these findings, the roots of the analyzed yuc knockout mutants displayed a reduced response to methyl jasmonate (MeJA). The similar response of the yuc8 and yuc9 mutants to MeJA in cotyledons and hypocotyls suggests functional overlap of YUC8 and YUC9 in aerial tissues, while their function in roots shows some specificity, probably in part related to different spatio-temporal expression patterns of the two genes. These results provide evidence for an intimate functional relationship between oxylipin signaling and auxin homeostasis.


Planta | 2007

cyclo-Oxylipin-galactolipids in plants: occurrence and dynamics

Christine Böttcher; Elmar W. Weiler

Abstractcyclo-Oxylipin-galactolipids (cGL) are mono- or digalactosyldiglycerides carrying a cyclo-oxylipin in the sn1- and/or sn2-position or esterified to the galactose moiety. These compounds were recently identified in Arabidopsis thaliana. We provide evidence that cGL are mainly, if not exclusively, part of the thylakoid and can be hydrolysed by lipolytic activities associated with photosynthesis-related protein complexes in vitro. Using HPLC/ESI–mass spectrometry, cGL are shown to be restricted in occurrence to the genus Arabidopsis, they do not occur in other plants tested. A. thaliana cGL are rapidly and transiently formed upon wounding with characteristic changes in composition of the cGL-fraction. While the biological role of cGL is not understood, the genus Arabidopsis may present a model-case of chemical evolution of a novel class of regulatory molecules.


Journal of Experimental Botany | 2011

Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development

Christine Böttcher; Paul K. Boss; Christopher Davies

Nine Gretchen Hagen (GH3) genes were identified in grapevine (Vitis vinifera L.) and six of these were predicted on the basis of protein sequence similarity to act as indole-3-acetic acid (IAA)-amido synthetases. The activity of these enzymes is thought to be important in controlling free IAA levels and one auxin-inducible grapevine GH3 protein, GH3-1, has previously been implicated in the berry ripening process. Ex planta assays showed that the expression of only one other GH3 gene, GH3-2, increased following the treatment of grape berries with auxinic compounds. One of these was the naturally occurring IAA and the other two were synthetic, α-naphthalene acetic acid (NAA) and benzothiazole-2-oxyacetic acid (BTOA). The determination of steady-state kinetic parameters for the recombinant GH3-1 and GH3-2 proteins revealed that both enzymes efficiently conjugated aspartic acid (Asp) to IAA and less well to NAA, while BTOA was a poor substrate. GH3-2 gene expression was induced by IAA treatment of pre-ripening berries with an associated increase in levels of IAA-Asp and a decrease in free IAA levels. This indicates that GH3-2 responded to excess auxin to maintain low levels of free IAA. Grape berry ripening was not affected by IAA application prior to veraison (ripening onset) but was considerably delayed by NAA and even more so by BTOA. The differential effects of the three auxinic compounds on berry ripening can therefore be explained by the induction and acyl substrate specificity of GH3-2. These results further indicate an important role for GH3 proteins in controlling auxin-related plant developmental processes.


BMC Plant Biology | 2013

Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening

Christine Böttcher; Crista A. Burbidge; Paul K. Boss; Christopher Davies

BackgroundFruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species.ResultsGrapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase.ConclusionsIn grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated concentrations of ethylene prior to the initiation of ripening might lead to an increased production of IAA, suggesting a complex involvement of this auxin and its conjugates in grape berry ripening.


The Plant Cell | 2012

Crystal Structure of an Indole-3-Acetic Acid Amido Synthetase from Grapevine Involved in Auxin Homeostasis

Thomas S. Peat; Christine Böttcher; Janet Newman; Del Lucent; Nathan Cowieson; Christopher Davies

The crystal structure of an indole-3-acetic acid amido synthetase from Vitis vinifera involved in auxin homeostasis is presented. Residues likely to be involved in acyl group, amino acid, and ATP substrate binding have been identified, and this information provides a tool for designing new, effective auxins. Auxins are important for plant growth and development, including the control of fruit ripening. Conjugation to amino acids by indole-3-acetic acid (IAA)-amido synthetases is an important part of auxin homeostasis. The structure of the auxin-conjugating Gretchen Hagen3-1 (GH3-1) enzyme from grapevine (Vitis vinifera), in complex with an inhibitor (adenosine-5′-[2-(1H-indol-3-yl)ethyl]phosphate), is presented. Comparison with a previously published benzoate-conjugating enzyme from Arabidopsis thaliana indicates that grapevine GH3-1 has a highly similar domain structure and also undergoes a large conformational change during catalysis. Mutational analyses and structural comparisons with other proteins have identified residues likely to be involved in acyl group, amino acid, and ATP substrate binding. Vv GH3-1 is a monomer in solution and requires magnesium ions solely for the adenlyation reaction. Modeling of IAA and two synthetic auxins, benzothiazole-2-oxyacetic acid (BTOA) and 1-naphthaleneacetic acid (NAA), into the active site indicates that NAA and BTOA are likely to be poor substrates for this enzyme, confirming previous enzyme kinetic studies. This suggests a reason for the increased effectiveness of NAA and BTOA as auxins in planta and provides a tool for designing new and effective auxins.


PLOS ONE | 2012

A Novel Tool for Studying Auxin-Metabolism: The Inhibition of Grapevine Indole-3-Acetic Acid-Amido Synthetases by a Reaction Intermediate Analogue

Christine Böttcher; Eric G. Dennis; Steven W. Polyak; Paul K. Boss; Christopher Davies

An important process for the regulation of auxin levels in plants is the inactivation of indole-3-acetic acid (IAA) by conjugation to amino acids. The conjugation reaction is catalysed by IAA-amido synthetases belonging to the family of GH3 proteins. Genetic approaches to study the biological significance of these enzymes have been hampered by large gene numbers and a high degree of functional redundancy. To overcome these difficulties a chemical approach based on the reaction mechanism of GH3 proteins was employed to design a small molecule inhibitor of IAA-amido synthetase activity. Adenosine-5′-[2-(1H-indol-3-yl)ethyl]phosphate (AIEP) mimics the adenylated intermediate of the IAA-conjugation reaction and was therefore proposed to compete with the binding of MgATP and IAA in the initial stages of catalysis. Two grapevine IAA-amido synthetases with different catalytic properties were chosen to test the inhibitory effects of AIEP in vitro. GH3-1 has previously been implicated in the grape berry ripening process and is restricted to two amino acid substrates, whereas GH3-6 conjugated IAA to 13 amino acids. AIEP is the most potent inhibitor of GH3 enzymes so far described and was shown to be competitive against MgATP and IAA binding to both enzymes with Ki-values 17-68-fold lower than the respective Km-values. AIEP also exhibited in vivo activity in an ex planta test system using young grape berries. Exposure to 5–20 µM of the inhibitor led to decreased levels of the common conjugate IAA-Asp and reduced the accumulation of the corresponding Asp-conjugate upon treatment with a synthetic auxin. AIEP therefore represents a novel chemical probe with which to study IAA-amido synthetase function.


Functional Plant Biology | 2013

Ripening of grape berries can be advanced or delayed by reagents that either reduce or increase ethylene levels

Christine Böttcher; Katie E. Harvey; Paul K. Boss; Christopher Davies

Grape (Vitis vinifera L.) berries are considered to be nonclimacteric fruit as they do not exhibit a large rise in ethylene production or respiration rate at the onset of ripening (veraison). However, ethylene may still play a role in berry development and in ripening in particular. (2-Chloroethyl)phosphonic acid (CEPA), an ethylene-releasing reagent, delayed ripening when applied early in berry development. In agreement with a role for ethylene in controlling the timing of ripening, the application of an inhibitor of ethylene biosynthesis, aminoethoxyvinylglycine (AVG), advanced ripening, as did abscisic acid, when applied during the preveraison period. Applications of CEPA nearer to the time of veraison enhanced berry colouration. Changes in the expression of ethylene biosynthesis and receptor genes were observed throughout berry development. Transcript levels of some of these genes were increased by CEPA and decreased by AVG, suggesting changes in ethylene synthesis and perception during the preveraison period that might contribute to the biphasic response to CEPA (ethylene). The significant delay of ripening in field-grown grapes through the application of CEPA also indicates that this may be useful in controlling the timing of veraison, and therefore harvest date, in warmer climates.


American Journal of Enology and Viticulture | 2014

Various Influences of Harvest Date and Fruit Sugar Content on Different Wine Flavor and Aroma Compounds

Paul K. Boss; Christine Böttcher; Christopher Davies

Over the recent past a reduction of the time required for grapes to achieve sugar ripeness, possibly a result of climate change, has been observed in many countries, raising the issue of a potential disconnect between flavor ripeness and sugar accumulation. An experiment using Vitis vinifera L. cv. Riesling was conducted to test the relationship between sugar content of fruit and harvest date with changes in the abundances of wine volatile compounds. The Brix of individual berries was determined at four harvest dates and pooled in distinct sugar content categories before fermentation and analysis of headspace volatile compounds. Results showed a complex relationship for sugar content, harvest date, and wine volatile composition. The compounds that significantly changed in the wines could be grouped into six clusters depending on the accumulation patterns across both sugar content and harvest date. Positive impact varietal compounds, especially monoterpenes, generally increased in abundance in relation to increasing Brix, with less of an effect due to harvest date. Compounds that decreased in abundance in relation to Brix also seemed to be influenced by harvest date, with the concentration at the earliest sampling time point particularly high. Many of these compounds were acetate esters of higher alcohols as well as ketones and acetals. Results suggest that, overall, positive impact volatiles accumulate in a manner closely related to increasing Brix but that the loss of compounds in the fruit that may impart negative attributes to wine may be a passive process and require a certain amount of time on the vine.

Collaboration


Dive into the Christine Böttcher's collaboration.

Top Co-Authors

Avatar

Christopher Davies

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Paul K. Boss

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Crista A. Burbidge

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Katie E. Harvey

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Emily L. Nicholson

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrienne R. Hardham

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Anthony R. Ashton

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Bostjan Kobe

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Curtis M. Kalua

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge