Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine E. Fuller is active.

Publication


Featured researches published by Christine E. Fuller.


Lancet Oncology | 2006

Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial

Amar Gajjar; Murali Chintagumpala; David M. Ashley; Stewart J. Kellie; Larry E. Kun; Thomas E. Merchant; Shaio Woo; Greg Wheeler; Valerie Ahern; Matthew J. Krasin; Maryam Fouladi; Alberto Broniscer; Robert A. Krance; Gregory A. Hale; Clinton F. Stewart; Robert C. Dauser; Robert A. Sanford; Christine E. Fuller; Ching Lau; James M. Boyett; Dana Wallace; Richard J. Gilbertson

BACKGROUND Current treatment for medulloblastoma, which includes postoperative radiotherapy and 1 year of chemotherapy, does not cure many children with high-risk disease. We aimed to investigate the effectiveness of risk-adapted radiotherapy followed by a shortened period of dose-intense chemotherapy in children with medulloblastoma. METHODS After resection, patients were classified as having average-risk medulloblastoma (< or = 1.5 cm2 residual tumour and no metastatic disease) or high-risk medulloblastoma (> 1.5 cm2 residual disease or metastatic disease localised to neuraxis) medulloblastoma. All patients received risk-adapted craniospinal radiotherapy (23.4 Gy for average-risk disease and 36.0-39.6 Gy for high-risk disease) followed by four cycles of cyclophosphamide-based, dose-intensive chemotherapy. Patients were assessed regularly for disease status and treatment side-effects. The primary endpoint was 5-year event-free survival; we also measured overall survival. This study is registered with ClinicalTrials.gov, number NCT00003211. FINDINGS Of 134 children with medulloblastoma who underwent treatment (86 average-risk, 48 high-risk), 119 (89%) completed the planned protocol. No treatment-related deaths occurred. 5-year overall survival was 85% (95% CI 75-94) in patients in the average-risk group and 70% (54-84) in those in the high-risk group (p=0.04); 5-year event-free survival was 83% (73-93) and 70% (55-85), respectively (p=0.046). For the 116 patients whose histology was reviewed centrally, histological subtype correlated with 5-year event-free survival (p=0.04): 84% (74-95) for classic histology, 77% (49-100) for desmoplastic tumours, and 57% (33-80) for large-cell anaplastic tumours. INTERPRETATION Risk-adapted radiotherapy followed by a shortened schedule of dose-intensive chemotherapy can be used to improve the outcome of patients with high-risk medulloblastoma.


Journal of Clinical Oncology | 2006

Genomics Identifies Medulloblastoma Subgroups That Are Enriched for Specific Genetic Alterations

Margaret C. Thompson; Christine E. Fuller; Twala L. Hogg; James Dalton; David Finkelstein; Ching C. Lau; Murali Chintagumpala; Adekunle M. Adesina; David M. Ashley; Stewart J. Kellie; Michael D. Taylor; Tom Curran; Amar Gajjar; Richard J. Gilbertson

PURPOSE Traditional genetic approaches to identify gene mutations in cancer are expensive and laborious. Nonetheless, if we are to avoid rejecting effective molecular targeted therapies, we must test these drugs in patients whose tumors harbor mutations in the drug target. We hypothesized that gene expression profiling might be a more rapid and cost-effective method of identifying tumors that contain specific genetic abnormalities. MATERIALS AND METHODS Gene expression profiles of 46 samples of medulloblastoma were generated using the U133av2 Affymetrix oligonucleotide array and validated using real-time reverse transcriptase polymerase chain reaction (RT-PCR) and immunohistochemistry. Genetic abnormalities were confirmed using fluorescence in situ hybridization (FISH) and direct sequencing. RESULTS Unsupervised analysis of gene expression profiles partitioned medulloblastomas into five distinct subgroups (subgroups A to E). Gene expression signatures that distinguished these subgroups predicted the presence of key molecular alterations that we subsequently confirmed by gene sequence analysis and FISH. Subgroup-specific abnormalities included mutations in the Wingless (WNT) pathway and deletion of chromosome 6 (subgroup B) and mutations in the Sonic Hedgehog (SHH) pathway (subgroup D). Real-time RT-PCR analysis of gene expression profiles was then used to predict accurately the presence of mutations in the WNT and SHH pathways in a separate group of 31 medulloblastomas. CONCLUSION Genome-wide expression profiles can partition large tumor cohorts into subgroups that are enriched for specific genetic alterations. This approach may assist ultimately in the selection of patients for future clinical trials of molecular targeted therapies.


Nature | 2006

Inactivation of the p53 pathway in retinoblastoma.

Nikia A. Laurie; Stacy L. Donovan; Chie Schin Shih; Jiakun Zhang; Nicholas Mills; Christine E. Fuller; Amina Teunisse; Suzanne Lam; Y.F. Ramos; Adithi Mohan; Dianna A. Johnson; Matthew W. Wilson; Carlos Rodriguez-Galindo; Micaela Quarto; Sarah Francoz; Susan M. Mendrysa; R. Kiplin Guy; Jean-Christophe Marine; Aart G. Jochemsen; Michael A. Dyer

Most human tumours have genetic mutations in their Rb and p53 pathways, but retinoblastoma is thought to be an exception. Studies suggest that retinoblastomas, which initiate with mutations in the gene retinoblastoma 1 (RB1), bypass the p53 pathway because they arise from intrinsically death-resistant cells during retinal development. In contrast to this prevailing theory, here we show that the tumour surveillance pathway mediated by Arf, MDM2, MDMX and p53 is activated after loss of RB1 during retinogenesis. RB1-deficient retinoblasts undergo p53-mediated apoptosis and exit the cell cycle. Subsequently, amplification of the MDMX gene and increased expression of MDMX protein are strongly selected for during tumour progression as a mechanism to suppress the p53 response in RB1-deficient retinal cells. Our data provide evidence that the p53 pathway is inactivated in retinoblastoma and that this cancer does not originate from intrinsically death-resistant cells as previously thought. In addition, they support the idea that MDMX is a specific chemotherapeutic target for treating retinoblastoma.


Journal of Clinical Oncology | 2005

Atypical Teratoid/Rhabdoid Tumors (ATRT): Improved Survival in Children 3 Years of Age and Older With Radiation Therapy and High-Dose Alkylator-Based Chemotherapy

Tanya Tekautz; Christine E. Fuller; Susan M. Blaney; Maryam Fouladi; Alberto Broniscer; Thomas E. Merchant; Matthew J. Krasin; James Dalton; Gregory A. Hale; Larry E. Kun; Dana Wallace; Richard J. Gilbertson; Amar Gajjar

PURPOSE To describe clinical features, therapeutic approaches, and prognostic factors in pediatric patients with atypical teratoid/rhabdoid tumors (ATRT) treated at St Jude Childrens Research Hospital (SJCRH). PATIENTS AND METHODS Primary tumor samples from patients diagnosed with ATRT at SJCRH between July 1984 and June 2003 were identified. Pathology review included histologic, immunohistochemical analysis, and fluorescence in situ hybridization for SMARCB1 (also known as hSNF5/INI1) deletion. Clinical records of patients with pathologic confirmation of ATRT were reviewed. RESULTS Thirty-seven patients were diagnosed with ATRT at SJCRH during the 19-year study interval. Six patients were excluded from this clinical review based on pathologic or clinical criteria. Of the remaining 31 patients, 22 were younger than 3 years. Posterior fossa primary lesions and metastatic disease at diagnosis were more common in younger patients with ATRT. All patients underwent surgical resection; 30 received subsequent chemotherapy. The majority of patients aged 3 years or older received postoperative craniospinal radiation. Two-year event-free (EFS) and overall survival (OS) of children aged 3 years or older (EFS, 78% + 14%; OS, 89% +/- 11%) were significantly better than those for younger patients (EFS, 11% +/- 6%; OS, 17% +/- 8%); EFS, P = .009 and OS, P = .0001. No other clinical characteristics were predictive of survival. Three of four patients 3 years or older with progressive disease were successfully rescued with ifosfamide, carboplatin, and etoposide therapy. CONCLUSION Children presenting with ATRT before the age of 3 years have a dismal prognosis. ATRT presenting in older patients can be cured using a combination of radiation and high-dose alkylating therapy. Older patients with relapsed ATRT can have salvage treatment using ICE chemotherapy.


Journal of Clinical Oncology | 2007

Clinical and Molecular Characteristics of Malignant Transformation of Low-Grade Glioma in Children

Alberto Broniscer; Suzanne J. Baker; Alina Nico West; Melissa M. Fraser; Erika Proko; Mehmet Kocak; James Dalton; Gerard P. Zambetti; David W. Ellison; L. E. Kun; Amar Gajjar; Richard J. Gilbertson; Christine E. Fuller

PURPOSE To analyze the clinical and molecular characteristics of malignant transformation (MT) of low-grade glioma (LGG) in children. PATIENTS AND METHODS The clinical, radiologic, and histologic characteristics of children treated at our institution who experienced MT of LGG were reviewed. Molecular alterations in these tumors were analyzed by fluorescent in situ hybridization, immunohistochemistry, and TP53 sequencing. Cumulative incidence estimate and risk factors for MT were determined for 65 patients with grade 2 astrocytoma treated at our institution during the study interval. RESULTS Eleven patients who experienced MT were identified (median age at diagnosis of LGG, 13.3 years). Initial diagnoses were grade 2 astrocytoma (n = 6) and other grade 1/2 gliomas (n = 5). The median latency of MT was 5.1 years. Histologic diagnoses after MT were glioblastoma (n = 7) and other high-grade gliomas (n = 4). The 15-year cumulative incidence estimate of MT among 65 patients with grade 2 astrocytoma was 6.7% +/- 3.9%; no risk factor analyzed, including radiotherapy, was associated with MT. Tissue was available for molecular analysis in all patients, including nine with samples obtained before and after MT. TP53 overexpression was more common after MT. Deletions of RB1 and/or CDKN2A were observed in 71% of LGGs and in 90% of tumors after MT. PTEN pathway abnormalities occurred in 76% of patients. One of five oncogenes analyzed (PDGFRA) was amplified in one patient. CONCLUSION The molecular abnormalities that occur during MT of LGG in children are similar to those observed in primary and secondary glioblastoma in adults.


Cancer Research | 2006

Shh Pathway Activity Is Down-Regulated in Cultured Medulloblastoma Cells: Implications for Preclinical Studies

Ken Sasai; Justyna T. Romer; Youngsoo Lee; David Finkelstein; Christine E. Fuller; Peter J. McKinnon; Tom Curran

Gene expression profiling indicates that the Sonic Hedgehog (Shh) pathway is active in approximately 30% of human medulloblastomas, suggesting that it could provide a useful therapeutic target. Previously, we showed that spontaneous medulloblastomas in Ptc1(+/-)p53-/- mice could be eradicated by treatment with a small-molecule inhibitor (HhAntag) of Smoothened (Smo). Here, we compared the responses of mouse medulloblastoma cells propagated in flank allografts, either directly or after culture in vitro, to HhAntag. We found that Shh pathway activity was suppressed in medulloblastoma cells cultured in vitro and it was not restored when these cells were transplanted into the flank of nude mice. The growth of these transplanted tumor cells was not inhibited by treatment of mice with doses of HhAntag that completely suppressed Smo activity. Interestingly, tumor cells transplanted directly into the flank maintained Smo activity and were sensitive to treatment with HhAntag. These findings indicate that propagation of tumor cells in culture inhibits Smo activity in a way that cannot be reversed by transplantation in vivo, and they raise concerns about the use of cultured tumor cells to test the efficacy of Shh pathway inhibitors as anticancer therapies.


Modern Pathology | 2005

INI1 expression is retained in composite rhabdoid tumors, including rhabdoid meningiomas

Arie Perry; Christine E. Fuller; Alexander R. Judkins; Louis P. Dehner; Jaclyn A. Biegel

Rhabdoid cells are encountered in specific entities, such as malignant rhabdoid tumor and atypical teratoid/rhabdoid tumor, as well as in composite rhabdoid tumors derived secondarily from other tumor types. Although rhabdoid tumors are uniformly aggressive, distinction of the entity from the phenotype remains important for its therapeutic implications. The majority of malignant rhabdoid tumors and atypical teratoid/rhabdoid tumors affect infants and young children, harbor chromosome 22q deletions, and inactivate the INI1/hSNF5/BAF47 tumor suppressor gene on 22q11.2. In contrast, most composite rhabdoid tumors are diagnosed in adults, with FISH detectable 22q losses the exception rather than the rule. However, this assay remains limited since 22q dosages are maintained in 20–30% of malignant rhabdoid tumors and atypical teratoid/rhabdoid tumors. Furthermore, chromosome 22 losses are common in some parent tumor types, particularly meningiomas. The recently developed INI1 antibody shows loss of nuclear expression in malignant rhabdoid tumors and atypical teratoid/rhabdoid tumors, though its status in composite rhabdoid tumors is largely unknown. Therefore, we utilized immunohistochemistry and FISH to study INI1 expression and 22q dosages, respectively, in 40 composite rhabdoid tumors, including 16 meningiomas, 15 carcinomas, three melanomas, two sarcomas, two glioblastomas, and 1 neuroblastoma. Approximately 70% of rhabdoid meningiomas had a 22q deletion, but this was rare in other tumor types. Except for one retroperitoneal leiomyosarcoma, nuclear INI1 expression was retained in all composite rhabdoid tumors, including meningiomas with 22q deletion. Therefore, we conclude that INI1 immunohistochemistry is a relatively simple, sensitive, and specific technique for distinguishing malignant rhabdoid tumor and atypical teratoid/rhabdoid tumor from composite rhabdoid tumor.


Clinical Cancer Research | 2004

Phase I Trial of Temozolomide and Protracted Irinotecan in Pediatric Patients with Refractory Solid Tumors

Lars M. Wagner; Kristine R. Crews; Lisa C. Iacono; Peter J. Houghton; Christine E. Fuller; M. Beth McCarville; Robert E. Goldsby; Karen Albritton; Clinton F. Stewart; Victor M. Santana

Purpose: The purpose is to estimate the maximum-tolerated dose (MTD) of temozolomide and irinotecan given on a protracted schedule in 28-day courses to pediatric patients with refractory solid tumors. Experimental Design: Twelve heavily pretreated patients received 56 courses of oral temozolomide at 100 mg/m2/day for 5 days combined with i.v. irinotecan given daily for 5 days for 2 consecutive weeks at either 10 mg/m2/day (n = 6) or 15 mg/m2/day (n = 6). We assessed toxicity, the pharmacokinetics of temozolomide and irinotecan, and the DNA repair phenotype in tumor samples. Results: Two patients experienced dose-limiting toxicity (DLT) at the higher dose level; one had grade 4 diarrhea, whereas the other had bacteremia with grade 2 neutropenia. In contrast, no patient receiving temozolomide and 10 mg/m2/day irinotecan experienced DLT. Myelosuppression was minimal and noncumulative. No pharmacokinetic interaction was observed. Drug metabolite exposures at the MTD were similar to exposures previously associated with single-agent antitumor activity. One complete response, two partial responses, and one minor response were observed in Ewing’s sarcoma and neuroblastoma patients previously treated with stem cell transplant. Responding patients had low or absent O6-methylguanine-DNA methyltransferase expression in tumor tissue. Conclusions: The MTD using this schedule was temozolomide (100 mg/m2/day) and irinotecan (10 mg/m2/day), with DLT being diarrhea and infection. Drug clearance was similar to single-agent values, and clinically relevant SN-38 lactone and MTIC exposures were achieved at the MTD. As predicted by xenograft models, this combination and schedule appears to be tolerable and active in pediatric solid tumors. Evaluation of a 21-day schedule is planned.


American Journal of Pathology | 2001

NF1 deletions in S-100 protein-positive and negative cells of sporadic and neurofibromatosis 1 (NF1)-associated plexiform neurofibromas and malignant peripheral nerve sheath tumors

Arie Perry; Kevin A. Roth; Ruma Banerjee; Christine E. Fuller; David H. Gutmann

Although plexiform neurofibroma (PN) is thought to represent a benign neoplasm with the potential for malignant transformation (malignant peripheral nerve sheath tumor; MPNST), its neoplastic nature has been difficult to prove due to cellular heterogeneity, which hampers standard molecular genetic analysis. Its mixed composition typically includes Schwann cells, fibroblasts, perineurial-like cells, and mast cells. Although NF1 loss of heterozygosity has been reported in subsets of PNs, it remains uncertain which cell type(s) harbor these alterations. Using a dual-color fluorescence in situ hybridization and immunohistochemistry technique, we studied NF1 gene status in S-100 protein-positive and -negative cell subpopulations in archival paraffin-embedded specimens from seven PNs, two atypical PNs, one cellular/atypical PN, and eight MPNSTs derived from 13 patients, seven of which had neurofibromatosis type 1 (NF1). NF1 loss was detected in four of seven PNs and one atypical PN, with deletions entirely restricted to S-100 protein-immunoreactive Schwann cells. In contrast, all eight MPNSTs harbored NF1 deletions, regardless of S-100 protein expression or NF1 clinical status. Our results suggest that the Schwann cell is the primary neoplastic component in PNs and that S-100 protein-negative cells in MPNST represent dedifferentiated Schwann cells, which harbor NF1 deletions in both NF1-associated and sporadic tumors.


Molecular Cancer Therapeutics | 2010

Astrocyte Elevated Gene-1: A Novel Target for Human Glioma Therapy

Luni Emdad; Devanand Sarkar; Seok-Geun Lee; Zhao Zhong Su; Byoung Kwon Yoo; Rupesh Dash; Adly Yacoub; Christine E. Fuller; Khalid Shah; Paul Dent; Jeffrey N. Bruce; Paul B. Fisher

Malignant gliomas including glioblastoma multiforme (GBM) and anaplastic astrocytomas are the most common primary brain tumors. Despite multimodal treatment including surgery, chemotherapy, and radiation, median survival for patients with GBMs is only 12 to 15 months. Identifying molecules critical for glioma progression is crucial for devising effective targeted therapy. In the present study, we investigated the potential contribution of astrocyte elevated gene-1 (AEG-1) in gliomagenesis and explored the possibility of AEG-1 as a therapeutic target for malignant glioma. We analyzed the expression levels of AEG-1 in 9 normal brain tissues and 98 brain tumor patient samples by Western blot analysis and immunohistochemistry. AEG-1 expression was significantly elevated in >90% of diverse human brain tumor samples including GBMs and astrocytic tumors, and also in human glioma cell lines compared with normal brain tissues and normal astrocytes. Knockdown of AEG-1 by small interfering RNA inhibited cell viability, cloning efficiency, and invasive ability of U87 human glioma cells and 9L rat gliosarcoma cells. We also found that matrix metalloproteases (MMP-2 and MMP-9) are involved in AEG-1–mediated invasion of glioma cells. In an orthotopic nude mouse brain tumor model using primary human GBM12 tumor cells, AEG-1 small interfering RNA significantly suppressed glioma cell growth in vivo. Taken together, these provocative results indicate that AEG-1 may play a crucial role in the pathogenesis of glioma and that AEG-1 could represent a viable potential target for malignant glioma therapy. Mol Cancer Ther; 9(1); 79–88

Collaboration


Dive into the Christine E. Fuller's collaboration.

Top Co-Authors

Avatar

Arie Perry

University of California

View shared research outputs
Top Co-Authors

Avatar

Amar Gajjar

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

James Dalton

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Maryam Fouladi

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Richard J. Gilbertson

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Clinton F. Stewart

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Matthew W. Wilson

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Carlos Rodriguez-Galindo

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Larry E. Kun

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Sonia Narendra

State University of New York Upstate Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge