Christine Flaschenriem
University of Rochester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christine Flaschenriem.
Journal of the American Chemical Society | 2008
Ying Yu; Azwana R. Sadique; Jeremy M. Smith; Thomas R. Dugan; Ryan E. Cowley; William W. Brennessel; Christine Flaschenriem; Eckhard Bill; Thomas R. Cundari; Patrick L. Holland
We report a survey of the reactivity of the first isolable iron-hydride complexes with a coordination number less than 5. The high-spin iron(II) complexes [(beta-diketiminate)Fe(mu-H)] 2 react rapidly with representative cyanide, isocyanide, alkyne, N 2, alkene, diazene, azide, CO 2, carbodiimide, and Brønsted acid containing substrates. The reaction outcomes fall into three categories: (1) addition of Fe-H across a multiple bond of the substrate, (2) reductive elimination of H 2 to form iron(I) products, and (3) protonation of the hydride to form iron(II) products. The products include imide, isocyanide, vinyl, alkyl, azide, triazenido, benzo[ c]cinnoline, amidinate, formate, and hydroxo complexes. These results expand the range of known bond transformations at iron complexes. Additionally, they give insight into the elementary transformations that may be possible at the iron-molybdenum cofactor of nitrogenases, which may have hydride ligands on high-spin, low-coordinate metal atoms.
Inorganic Chemistry | 2008
Jacob Schneider; Young-A Lee; Javier Pérez; William W. Brennessel; Christine Flaschenriem; Richard Eisenberg
The structural and photophysical properties of a new series of cationic and neutral Au(I) dinuclear compounds (1 and 2, respectively) bridged by bis(diphenylphosphino)methane (dppm) and substituted benzimidazolethiolate (X-BIT) ligands, where X = H (a), Me (b), OMe (c), and Cl (d), have been studied. Monocationic complexes, [A(u2)(micro-X-BIT)(micro-dppm)](CF(3)CO(2)), were prepared by the reaction of [A(u2)(micro-dppm)](CF(3)CO(2))(2) with 1 equiv of X-BIT in excellent yields. The cations 1a-1d possess similar molecular structures, each with a linear coordination geometry around the Au(I) nuclei, as well as relatively short intramolecular Au(I)...Au(I) separations ranging between 2.88907(6) A for 1d and 2.90607(16) A for 1a indicative of strong aurophilic interactions. The cations are violet luminescent in CH(2)Cl(2) solution with a lambda(em)(max) of ca. 365 nm, assigned as ligand-based or metal-centered (MC) transitions. Three of the cationic complexes, 1a, 1b, and 1d, exhibit unusual luminescence tribochromism in the solid-state, in which the photoemission is shifted significantly to higher energy upon gentle grinding of microcrystalline samples with DeltaE = 1130 cm(-1) for 1a, 670 cm(-1) (1b), and 870 cm(-1) (1d). The neutral dinuclear complexes, [A(u2)(micro-X-BIT)(micro-dppm)] (2a-2d) were formed in good yields by the treatment of a CH(2)Cl(2) solution of cationic compounds (1) with NEt(3). 2a-2d aggregate to form dimers having substantial intra- and intermolecular aurophilic interactions with unsupported Au(I)...Au(I) intermolecular distances in the range of 2.8793(4)-2.9822(8) A, compared with intramolecular bridge-supported separations of 2.8597(3)-2.9162(3) A. 2a-2d exhibit brilliant luminescence in the solid-state and in DMSO solution with red-shifted lambda(em)(max) energies in the range of 485-545 nm that are dependent on X-BIT and assigned as ligand-to-metal-metal charge transfer (LMMCT) states based in part on the extended Au...Au...Au...Au interactions.
Inorganic Chemistry | 2010
Ryan E. Cowley; Nathan J. DeYonker; Nathan A. Eckert; Thomas R. Cundari; Serena DeBeer; Eckhard Bill; Xavier Ottenwaelder; Christine Flaschenriem; Patrick L. Holland
Reaction of 1-adamantyl azide with iron(I) diketiminate precursors gives metastable but isolable imidoiron(III) complexes LFe=NAd (L = bulky beta-diketiminate ligand; Ad = 1-adamantyl). This paper addresses (1) the spectroscopic and structural characterization of the Fe=N multiple bond in these interesting three-coordinate iron imido complexes, and (2) the mechanism through which the imido complexes form. The iron(III) imido complexes have been examined by (1)H NMR and electron paramagnetic resonance (EPR) spectroscopies and temperature-dependent magnetic susceptibility (SQUID), and structurally characterized by crystallography and/or extended X-ray absorption fine structure (EXAFS) measurements. These data show that the imido complexes have quartet ground states and short (1.68 +/- 0.01 A) iron-nitrogen bonds. The formation of the imido complexes proceeds through unobserved iron-N(3)R intermediates, which are indicated by QM/MM computations to be best described as iron(II) with an N(3)R radical anion. The radical character on the organoazide bends its NNN linkage to enable easy N(2) loss and imido complex formation. The product distribution between imidoiron(III) products and hexazene-bridged diiron(II) products is solvent-dependent, and the solvent dependence can be explained by coordination of certain solvents to the iron(I) precursor prior to interaction with the organoazide.
Journal of the American Chemical Society | 2005
Javier Vela; Jeremy M. Smith; Ying Yu; Nicole A. Ketterer; Christine Flaschenriem; Rene J. Lachicotte; Patrick L. Holland
Journal of the American Chemical Society | 2006
Jeremy M. Smith; Azwana R. Sadique; Thomas R. Cundari; Kenton R. Rodgers; Gudrun S. Lukat-Rodgers; Rene J. Lachicotte; Christine Flaschenriem; Javier Vela; Patrick L. Holland
Journal of the American Chemical Society | 2004
Javier Vela; Sebastian A. Stoian; Christine Flaschenriem; Eckard Münck; Patrick L. Holland
Journal of the American Chemical Society | 2005
Michael A. Calter; Ryan Phillips; Christine Flaschenriem
Organic Letters | 2005
Michael A. Calter; Olexandr A. Tretyak; Christine Flaschenriem
Inorganic Chemistry | 2006
Ying Yu; Jeremy M. Smith; Christine Flaschenriem; Patrick L. Holland
Inorganic Chemistry | 2006
Daniel J. Fox; Simon B. Duckett; Christine Flaschenriem; William W. Brennessel; Jacob Schneider; and Ahmet Gunay; Richard Eisenberg