Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Gaspin is active.

Publication


Featured researches published by Christine Gaspin.


Nature Communications | 2014

The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates

Camille Berthelot; Frédéric Brunet; Domitille Chalopin; Amélie Juanchich; Maria Bernard; Benjamin Noel; Pascal Bento; Corinne Da Silva; Karine Labadie; Adriana Alberti; Jean-Marc Aury; Alexandra Louis; Patrice Dehais; Philippe Bardou; Jérôme Montfort; Christophe Klopp; Cédric Cabau; Christine Gaspin; Gary H. Thorgaard; Mekki Boussaha; Edwige Quillet; René Guyomard; Delphine Galiana; Julien Bobe; Jean-Nicolas Volff; Carine Genet; Patrick Wincker; Olivier Jaillon; Hugues Roest Crollius

Vertebrate evolution has been shaped by several rounds of whole-genome duplications (WGDs) that are often suggested to be associated with adaptive radiations and evolutionary innovations. Due to an additional round of WGD, the rainbow trout genome offers a unique opportunity to investigate the early evolutionary fate of a duplicated vertebrate genome. Here we show that after 100 million years of evolution the two ancestral subgenomes have remained extremely collinear, despite the loss of half of the duplicated protein-coding genes, mostly through pseudogenization. In striking contrast is the fate of miRNA genes that have almost all been retained as duplicated copies. The slow and stepwise rediploidization process characterized here challenges the current hypothesis that WGD is followed by massive and rapid genomic reorganizations and gene deletions.


Science | 2014

Structural and functional partitioning of bread wheat chromosome 3B

Frédéric Choulet; Adriana Alberti; Sébastien Theil; Natasha Glover; Valérie Barbe; Josquin Daron; Lise Pingault; Pierre Sourdille; Arnaud Couloux; Etienne Paux; Philippe Leroy; Sophie Mangenot; Nicolas Guilhot; Jacques Le Gouis; François Balfourier; Michael Alaux; Véronique Jamilloux; Julie Poulain; Céline Durand; Arnaud Bellec; Christine Gaspin; Jan Safar; Jaroslav Dolezel; Jane Rogers; Klaas Vandepoele; Jean-Marc Aury; Klaus F. X. Mayer; Hélène Bergès; Hadi Quesneville; Patrick Wincker

We produced a reference sequence of the 1-gigabase chromosome 3B of hexaploid bread wheat. By sequencing 8452 bacterial artificial chromosomes in pools, we assembled a sequence of 774 megabases carrying 5326 protein-coding genes, 1938 pseudogenes, and 85% of transposable elements. The distribution of structural and functional features along the chromosome revealed partitioning correlated with meiotic recombination. Comparative analyses indicated high wheat-specific inter- and intrachromosomal gene duplication activities that are potential sources of variability for adaption. In addition to providing a better understanding of the organization, function, and evolution of a large and polyploid genome, the availability of a high-quality sequence anchored to genetic maps will accelerate the identification of genes underlying important agronomic traits.


Nucleic Acids Research | 2009

A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation.

Thomas Geissmann; Clément Chevalier; Marie-Josée Cros; Sandrine Boisset; Pierre Fechter; Céline Noirot; Jacques Schrenzel; Patrice François; François Vandenesch; Christine Gaspin; Pascale Romby

Bioinformatic analysis of the intergenic regions of Staphylococcus aureus predicted multiple regulatory regions. From this analysis, we characterized 11 novel noncoding RNAs (RsaA‐K) that are expressed in several S. aureus strains under different experimental conditions. Many of them accumulate in the late-exponential phase of growth. All ncRNAs are stable and their expression is Hfq-independent. The transcription of several of them is regulated by the alternative sigma B factor (RsaA, D and F) while the expression of RsaE is agrA-dependent. Six of these ncRNAs are specific to S. aureus, four are conserved in other Staphylococci, and RsaE is also present in Bacillaceae. Transcriptomic and proteomic analysis indicated that RsaE regulates the synthesis of proteins involved in various metabolic pathways. Phylogenetic analysis combined with RNA structure probing, searches for RsaE‐mRNA base pairing, and toeprinting assays indicate that a conserved and unpaired UCCC sequence motif of RsaE binds to target mRNAs and prevents the formation of the ribosomal initiation complex. This study unexpectedly shows that most of the novel ncRNAs carry the conserved C−rich motif, suggesting that they are members of a class of ncRNAs that target mRNAs by a shared mechanism.


PLOS ONE | 2010

Cartography of methicillin-resistant S. aureus transcripts: detection, orientation and temporal expression during growth phase and stress conditions.

Marie-Emilie Beaume; David Hernandez; Laurent Farinelli; Cécile Deluen; Patrick Linder; Christine Gaspin; Pascale Romby; Jacques Schrenzel; Patrice Francois

Background Staphylococcus aureus is a versatile bacterial opportunist responsible for a wide spectrum of infections. The severity of these infections is highly variable and depends on multiple parameters including the genome content of the bacterium as well as the condition of the infected host. Clinically and epidemiologically, S. aureus shows a particular capacity to survive and adapt to drastic environmental changes including the presence of numerous antimicrobial agents. Mechanisms triggering this adaptation remain largely unknown despite important research efforts. Most studies evaluating gene content have so far neglected to analyze the so-called intergenic regions as well as potential antisense RNA molecules. Principal Findings Using high-throughput sequencing technology, we performed an inventory of the whole transcriptome of S. aureus strain N315. In addition to the annotated transcription units, we identified more than 195 small transcribed regions, in the chromosome and the plasmid of S. aureus strain N315. The coding strand of each transcript was identified and structural analysis enabled classification of all discovered transcripts. RNA purified at four time-points during the growth phase of the bacterium allowed us to define the temporal expression of such transcripts. A selection of 26 transcripts of interest dispersed along the intergenic regions was assessed for expression changes in the presence of various stress conditions including pH, temperature, oxidative shocks and growth in a stringent medium. Most of these transcripts showed expression patterns specific for the defined stress conditions that we tested. Conclusions These RNA molecules potentially represent important effectors of S. aureus adaptation and more generally could support some of the epidemiological characteristics of the bacterium.


Molecular Ecology Resources | 2016

Decoding the oak genome: public release of sequence data, assembly, annotation and publication strategies

Christophe Plomion; Jean-Marc Aury; Joelle Amselem; Tina Alaeitabar; Valérie Barbe; Caroline Belser; Hélène Bergès; Catherine Bodénès; Nathalie Boudet; Christophe Boury; Aurélie Canaguier; Arnaud Couloux; Corinne Da Silva; Sébastien Duplessis; François Ehrenmann; Barbara Estrada-Mairey; Stéphanie Fouteau; Nicolas Francillonne; Christine Gaspin; Cécile Guichard; Christophe Klopp; Karine Labadie; Céline Lalanne; Isabelle Le Clainche; Jean-Charles Leplé; Grégoire Le Provost; Thibault Leroy; Isabelle Lesur; Francis Martin; Jonathan Mercier

The 1.5 Gbp/2C genome of pedunculate oak (Quercus robur) has been sequenced. A strategy was established for dealing with the challenges imposed by the sequencing of such a large, complex and highly heterozygous genome by a whole‐genome shotgun (WGS) approach, without the use of costly and time‐consuming methods, such as fosmid or BAC clone‐based hierarchical sequencing methods. The sequencing strategy combined short and long reads. Over 49 million reads provided by Roche 454 GS‐FLX technology were assembled into contigs and combined with shorter Illumina sequence reads from paired‐end and mate‐pair libraries of different insert sizes, to build scaffolds. Errors were corrected and gaps filled with Illumina paired‐end reads and contaminants detected, resulting in a total of 17 910 scaffolds (>2 kb) corresponding to 1.34 Gb. Fifty per cent of the assembly was accounted for by 1468 scaffolds (N50 of 260 kb). Initial comparison with the phylogenetically related Prunus persica gene model indicated that genes for 84.6% of the proteins present in peach (mean protein coverage of 90.5%) were present in our assembly. The second and third steps in this project are genome annotation and the assignment of scaffolds to the oak genetic linkage map. In accordance with the Bermuda and Fort Lauderdale agreements and the more recent Toronto Statement, the oak genome data have been released into public sequence repositories in advance of publication. In this presubmission paper, the oak genome consortium describes its principal lines of work and future directions for analyses of the nature, function and evolution of the oak genome.


BMC Genomics | 2008

RNomics and Modomics in the halophilic archaea Haloferax volcanii: identification of RNA modification genes

Henri Grosjean; Christine Gaspin; Christian Marck; Wayne A Decatur; Valérie de Crécy-Lagard

BackgroundNaturally occurring RNAs contain numerous enzymatically altered nucleosides. Differences in RNA populations (RNomics) and pattern of RNA modifications (Modomics) depends on the organism analyzed and are two of the criteria that distinguish the three kingdoms of life. If the genomic sequences of the RNA molecules can be derived from whole genome sequence information, the modification profile cannot and requires or direct sequencing of the RNAs or predictive methods base on the presence or absence of the modifications genes.ResultsBy employing a comparative genomics approach, we predicted almost all of the genes coding for the t+rRNA modification enzymes in the mesophilic moderate halophile Haloferax volcanii. These encode both guide RNAs and enzymes. Some are orthologous to previously identified genes in Archaea, Bacteria or in Saccharomyces cerevisiae, but several are original predictions.ConclusionThe number of modifications in t+rRNAs in the halophilic archaeon is surprisingly low when compared with other Archaea or Bacteria, particularly the hyperthermophilic organisms. This may result from the specific lifestyle of halophiles that require high intracellular salt concentration for survival. This salt content could allow RNA to maintain its functional structural integrity with fewer modifications. We predict that the few modifications present must be particularly important for decoding, accuracy of translation or are modifications that cannot be functionally replaced by the electrostatic interactions provided by the surrounding salt-ions. This analysis also guides future experimental validation work aiming to complete the understanding of the function of RNA modifications in Archaeal translation.


Bioinformatics | 2006

Searching RNA motifs and their intermolecular contacts with constraint networks

Patricia Thebault; S. de Givry; Thomas Schiex; Christine Gaspin

MOTIVATION Searching RNA gene occurrences in genomic sequences is a task whose importance has been renewed by the recent discovery of numerous functional RNA, often interacting with other ligands. Even if several programs exist for RNA motif search, none exists that can represent and solve the problem of searching for occurrences of RNA motifs in interaction with other molecules. RESULTS We present a constraint network formulation of this problem. RNA are represented as structured motifs that can occur on more than one sequence and which are related together by possible hybridization. The implemented tool MilPat is used to search for several sRNA families in genomic sequences. Results show that MilPat allows to efficiently search for interacting motifs in large genomic sequences and offers a simple and extensible framework to solve such problems. New and known sRNA are identified as H/ACA candidates in Methanocaldococcus jannaschii. AVAILABILITY http://carlit.toulouse.inra.fr/MilPaT/MilPat.pl.


Nucleic Acids Research | 2004

GeneFarm, structural and functional annotation of Arabidopsis gene and protein families by a network of experts

Sébastien Aubourg; Véronique Brunaud; Clémence Bruyère; Mark Cock; Richard Cooke; Annick Cottet; Arnaud Couloux; Patrice Dehais; Gilbert Deléage; Aymeric Duclert; Manuel Echeverria; Aimée Eschbach; Denis Falconet; Ghislain Filippi; Christine Gaspin; Christophe Geourjon; Jean-Michel Grienenberger; Guy Houlné; Elisabeth Jamet; Frédéric Lechauve; Olivier Leleu; Philippe Leroy; Régis Mache; Christian Meyer; Hafed Nedjari; Ioan Negrutiu; Valérie Orsini; Eric Peyretaillade; Cyril Pommier; Jeroen Raes

Genomic projects heavily depend on genome annotations and are limited by the current deficiencies in the published predictions of gene structure and function. It follows that, improved annotation will allow better data mining of genomes, and more secure planning and design of experiments. The purpose of the GeneFarm project is to obtain homogeneous, reliable, documented and traceable annotations for Arabidopsis nuclear genes and gene products, and to enter them into an added-value database. This re-annotation project is being performed exhaustively on every member of each gene family. Performing a family-wide annotation makes the task easier and more efficient than a gene-by-gene approach since many features obtained for one gene can be extrapolated to some or all the other genes of a family. A complete annotation procedure based on the most efficient prediction tools available is being used by 16 partner laboratories, each contributing annotated families from its field of expertise. A database, named GeneFarm, and an associated user-friendly interface to query the annotations have been developed. More than 3000 genes distributed over 300 families have been annotated and are available at http://genoplante-info.infobiogen.fr/Genefarm/. Furthermore, collaboration with the Swiss Institute of Bioinformatics is underway to integrate the GeneFarm data into the protein knowledgebase Swiss-Prot.


RNA | 2011

RNAspace.org: An integrated environment for the prediction, annotation, and analysis of ncRNA

Marie-Josée Cros; Antoine de Monte; Jérôme Mariette; Philippe Bardou; Benjamin Grenier-Boley; Daniel Gautheret; Hélène Touzet; Christine Gaspin

The annotation of noncoding RNA genes remains a major bottleneck in genome sequencing projects. Most genome sequences released today still come with sets of tRNAs and rRNAs as the only annotated RNA elements, ignoring hundreds of other RNA families. We have developed a web environment that is dedicated to noncoding RNA (ncRNA) prediction, annotation, and analysis and allows users to run a variety of tools in an integrated and flexible manner. This environment offers complementary ncRNA gene finders and a set of tools for the comparison, visualization, editing, and export of ncRNA candidates. Predictions can be filtered according to a large set of characteristics. Based on this environment, we created a public website located at http://RNAspace.org. It accepts genomic sequences up to 5 Mb, which permits for an online annotation of a complete bacterial genome or a small eukaryotic chromosome. The project is hosted as a Source Forge project (http://rnaspace.sourceforge.net/).


Constraints - An International Journal | 2008

DARN! A Weighted Constraint Solver for RNA Motif Localization

Matthias Zytnicki; Christine Gaspin; Thomas Schiex

Following recent discoveries about the important roles of non-coding RNAs (ncRNAs) in the cellular machinery, there is now great interest in identifying new occurrences of ncRNAs in available genomic sequences. In this paper, we show how the problem of finding new occurrences of characterized ncRNAs can be modeled as the problem of finding all locally-optimal solutions of a weighted constraint network using dedicated weighted global constraints, encapsulating pattern-matching algorithms and data structures. This is embodied in DARN!, a software tool for ncRNA localization, which, compared to existing pattern-matching based tools, offers additional expressivity (such as enabling RNA–RNA interactions to be described) and improved specificity (through the exploitation of scores and local optimality) without compromises in CPU efficiency. This is demonstrated on the actual search for tRNAs and H/ACA sRNA on different genomes.

Collaboration


Dive into the Christine Gaspin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Bardou

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Annick Moisan

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Matthias Zytnicki

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Patricia Thebault

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Arnaud Couloux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Christophe Klopp

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Céline Noirot

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascale Romby

University of Strasbourg

View shared research outputs
Researchain Logo
Decentralizing Knowledge