Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Gonzales is active.

Publication


Featured researches published by Christine Gonzales.


The FASEB Journal | 2002

The neuropeptide Y Y1 receptor regulates leptin-mediated control of energy homeostasis and reproductive functions

François P. Pralong; Christine Gonzales; Marie-Jeanne Voirol; Richard D. Palmiter; Hans-R. Brunner; Rolf C. Gaillard; Josiane Seydoux; Thierry Pedrazzini

The orexigenic neurotransmitter neuropeptide Y (NPY) plays a central role in the hypothalamic control of food intake and energy balance. NPY also exerts an inhibition of the gonadotrope axis that could be important in the response to poor metabolic conditions. In contrast, leptin provides an anorexigenic signal to centrally control the body needs in energy. Moreover, leptin contributes to preserve adequate reproductive functions by stimulating the activity of the gonadotrope axis. It is of interest that hypothalamic NPY represents a primary target of leptin actions. To evaluate the importance of the NPY Y1 and Y5 receptors in the downstream pathways modulated by leptin and controlling energy metabolism as well as the activity of the gonadotrope axis, we studied the effects of leptin administration on food intake and reproductive functions in mice deficient for the expression of either the Y1 or the Y5 receptor. Furthermore, the role of the Y1 receptor in leptin resistance was determined in leptin‐deficient ob/ob mice bearing a null mutation in the NPY Y1 locus. Results point to a crucial role for the NPY Y1 receptor in mediating the NPY pathways situated downstream of leptin actions and controlling food intake, the onset of puberty, and the maintenance of reproductive functions.


Journal of Molecular and Cellular Cardiology | 2014

Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease

Samir Ounzain; Iole Pezzuto; Rudi Micheletti; Frédéric Burdet; Razan Sheta; Mohamed Nemir; Christine Gonzales; Alexandre Sarre; Michael Alexanian; Matthew J. Blow; Dalit May; Rory Johnson; Jérôme Dauvillier; Len A. Pennacchio; Thierry Pedrazzini

The key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (IncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Through a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of IncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated IncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived IncRNAs.


Experimental Cell Research | 2009

Progenitor cell therapy for heart disease.

Christine Gonzales; Thierry Pedrazzini

Many cell types are currently being studied as potential sources of cardiomyocytes for cell transplantation therapy to repair and regenerate damaged myocardium. The question remains as to which progenitor cell represents the best candidate. Bone marrow-derived cells and endothelial progenitor cells have been tested in clinical studies. These cells are safe, but their cardiogenic potential is controversial. The functional benefits observed are probably due to enhanced angiogenesis, reduced ventricular remodeling, or to cytokine-mediated effects that promote the survival of endogenous cells. Human embryonic stem cells represent an unlimited source of cardiomyocytes due to their great differentiation potential, but each step of differentiation must be tightly controlled due to the high risk of teratoma formation. These cells, however, confront ethical barriers and there is a risk of graft rejection. These last two problems can be avoided by using induced pluripotent stem cells (iPS), which can be autologously derived, but the high risk of teratoma formation remains. Cardiac progenitor cells have the advantage of being cardiac committed, but important questions remain unanswered, such as what is the best marker to identify and isolate these cells? To date the different markers used to identify adult cardiac progenitor cells also recognize progenitor cells that are outside the heart. Thus, it cannot be determined whether the cardiac progenitor cells identified in the adult heart represent resident cells present since fetal life or extracardiac cells that colonized the heart after cardiac injury. Developmental studies have identified markers of multipotent progenitors, but it is unknown whether these markers are specific for adult progenitors when expressed in the adult myocardium. Cardiac regeneration is dependent on the stability of the cells transplanted into the host myocardium and on the electromechanical coupling with the endogenous cells. Finally, the promotion of endogenous regenerative processes by mobilizing endogenous progenitors represents a complementary approach to cell transplantation therapy.


Journal of Molecular and Cellular Cardiology | 2015

CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis

Samir Ounzain; Rudi Micheletti; Carme Arnan; Isabelle Plaisance; Dario Cecchi; Blanche Schroen; Ferran Reverter; Michael Alexanian; Christine Gonzales; Shi-Yan Ng; Giovanni Bussotti; Iole Pezzuto; Cedric Notredame; Stephane Heymans; Roderic Guigó; Rory Johnson; Thierry Pedrazzini

Long noncoding RNAs (lncRNAs) are emerging as important regulators of developmental pathways. However, their roles in human cardiac precursor cell (CPC) remain unexplored. To characterize the long noncoding transcriptome during human CPC cardiac differentiation, we profiled the lncRNA transcriptome in CPCs isolated from the human fetal heart and identified 570 lncRNAs that were modulated during cardiac differentiation. Many of these were associated with active cardiac enhancer and super enhancers (SE) with their expression being correlated with proximal cardiac genes. One of the most upregulated lncRNAs was a SE-associated lncRNA that was named CARMEN, (CAR)diac (M)esoderm (E)nhancer-associated (N)oncoding RNA. CARMEN exhibits RNA-dependent enhancing activity and is upstream of the cardiac mesoderm-specifying gene regulatory network. Interestingly, CARMEN interacts with SUZ12 and EZH2, two components of the polycomb repressive complex 2 (PRC2). We demonstrate that CARMEN knockdown inhibits cardiac specification and differentiation in cardiac precursor cells independently of MIR-143 and -145 expression, two microRNAs located proximal to the enhancer sequences. Importantly, CARMEN expression was activated during pathological remodeling in the mouse and human hearts, and was necessary for maintaining cardiac identity in differentiated cardiomyocytes. This study demonstrates therefore that CARMEN is a crucial regulator of cardiac cell differentiation and homeostasis.


The FASEB Journal | 2003

The neuropeptide Y Y1 receptor mediates NPY-induced inhibition of the gonadotrope axis under poor metabolic conditions

Christine Gonzales; Marie-Jeanne Voirol; Marco Giacomini; Rolf C. Gaillard; Thierry Pedrazzini; François P. Pralong

Hypothalamic neuropeptide Y (NPY) plays a central role in the control of food intake, energy balance, and modulation of neuroendocrine functions. In particular, an increase in NPY expression participates in the inhibition of the reproductive activity under poor nutritional conditions. The present study was designed to evaluate further the involvement of the Y1 subtype of NPY receptors in these effects. Food intake, body weight gain, and the onset of puberty were studied in groups of wild‐type and Y1 deficient mice that were either fed ad libitum or subjected to a 30% restriction in food intake. This moderate feeding restriction induced a similar deficit in body weight gain in wild‐type and in Y1 knockout mice. However, although wild‐type mice experienced the expected delay of puberty, all mice in the food restriction group and lacking Y1 could go through puberty over the time of the experiment despite decreases in circulating leptin levels and increases in hypothalamic NPY expression. This observation demonstrates that the absence of Y1 impairs the perception of decreasing energy stores by the gonadotrope axis, demonstrating a physiological role for Y1 in the sensing of endogenous metabolic parameters by the hypothalamus.


Circulation-cardiovascular Imaging | 2013

Selective In Vivo Visualization of Immune-Cell Infiltration in a Mouse Model of Autoimmune Myocarditis by Fluorine-19 Cardiac Magnetic Resonance

Ruud B. van Heeswijk; Jonathan De Blois; Gabriela Kania; Christine Gonzales; Przemyslaw Blyszczuk; Matthias Stuber; Urs Eriksson; Juerg Schwitter

Background— The goal of this study was to characterize the performance of fluorine-19 (19F) cardiac magnetic resonance (CMR) for the specific detection of inflammatory cells in a mouse model of myocarditis. Intravenously administered perfluorocarbons are taken up by infiltrating inflammatory cells and can be detected by 19F-CMR. 19F-labeled cells should, therefore, generate an exclusive signal at the inflamed regions within the myocardium. Methods and Results— Experimental autoimmune myocarditis was induced in BALB/c mice. After intravenous injection of 2×200 µL of a perfluorocarbon on day 19 and 20 (n=9) after immunization, in vivo 19F-CMR was performed at the peak of myocardial inflammation (day 21). In 5 additional animals, perfluorocarbon combined with FITC (fluorescein isothiocyanate) was administered for postmortem immunofluorescence and flow-cytometry analyses. Control experiments were performed in 9 animals. In vivo 19F-CMR detected myocardial inflammation in all experimental autoimmune myocarditis-positive animals. Its resolution was sufficient to identify even small inflammatory foci, that is, at the surface of the right ventricle. Postmortem immunohistochemistry and flow cytometry confirmed the presence of perfluorocarbon in macrophages, dendritic cells, and granulocytes, but not in lymphocytes. The myocardial volume of elevated 19F signal (r s=0.96; P<0.001), the 19F signal-to-noise ratio (r s=0.92; P<0.001), and the 19F signal integral (r s=0.96; P<0.001) at day 21 correlated with the histological myocarditis severity score. Conclusions— In vivo 19F-CMR was successfully used to visualize the inflammation specifically and robustly in experimental autoimmune myocarditis, and thus allowed for an unprecedented insight into the involvement of inflammatory cells in the disease process.


Radiology | 2015

Fluorine MR Imaging of Inflammation in Atherosclerotic Plaque in Vivo.

Ruud B. van Heeswijk; Maxime Pellegrin; Ulrich Flögel; Christine Gonzales; Jean-François Aubert; Lucia Mazzolai; Juerg Schwitter; Matthias Stuber

PURPOSE To preliminarily test the hypothesis that fluorine 19 ((19)F) magnetic resonance (MR) imaging enables the noninvasive in vivo identification of plaque inflammation in a mouse model of atherosclerosis, with histologic findings as the reference standard. MATERIALS AND METHODS The animal studies were approved by the local animal ethics committee. Perfluorocarbon (PFC) emulsions were injected intravenously in a mouse model of atherosclerosis (n = 13), after which (19)F and anatomic MR imaging were performed at the level of the thoracic aorta and its branches at 9.4 T. Four of these animals were imaged repeatedly (at 2-14 days) to determine the optimal detection time. Repeated-measures analysis of variance with a Tukey test was applied to determine if there was a significant change in (19)F signal-to-noise ratio (SNR) of the plaques and liver between the time points. Six animals were injected with a PFC emulsion that also contained a fluorophore. As a control against false-positive results, wild-type mice (n = 3) were injected with a PFC emulsion, and atherosclerotic mice were injected with a saline solution (n = 2). The animals were sacrificed after the last MR imaging examination, after which high-spatial-resolution ex vivo MR imaging and bright-field and immunofluorescent histologic examination were performed. RESULTS (19)F MR signal was detected in vivo in plaques in the aortic arch and its branches. The SNR was found to significantly increase up to day 6 (P < .001), and the SNR of all mice at this time point was 13.4 ± 3.3. The presence of PFC and plaque in the excised vessels was then confirmed both through ex vivo (19)F MR imaging and histologic examination, while no signal was detected in the control animals. Immunofluorescent histologic findings confirmed the presence of PFC in plaque macrophages. CONCLUSION (19)F MR imaging allows the noninvasive in vivo detection of inflammation in atherosclerotic plaques in a mouse model of atherosclerosis and opens up new avenues for both the early detection of vulnerable atherosclerosis and the elucidation of inflammation mechanisms in atherosclerosis.


PLOS ONE | 2016

In-Vivo Detection and Tracking of T Cells in Various Organs in a Melanoma Tumor Model by 19F-Fluorine MRS/MRI.

Christine Gonzales; Hikari Ananda Infinity Yoshihara; Nahzli Dilek; Julie Leignadier; Melita Irving; Pascal Miéville; Lothar Helm; Olivier Michielin; Juerg Schwitter

Background 19F-MRI and 19F-MRS can identify specific cell types after in-vitro or in-vivo 19F-labeling. Knowledge on the potential to track in-vitro 19F-labeled immune cells in tumor models by 19F-MRI/MRS is scarce. Aim To study 19F-based MR techniques for in-vivo tracking of adoptively transferred immune cells after in-vitro 19F-labeling, i.e. to detect and monitor their migration non-invasively in melanoma-bearing mice. Methods Splenocytes (SP) were labeled in-vitro with a perfluorocarbon (PFC) and IV-injected into non-tumor bearing mice. In-vitro PFC-labeled ovalbumin (OVA)-specific T cells from the T cell receptor-transgenic line OT-1, activated with anti-CD3 and anti-CD28 antibodies (Tact) or OVA-peptide pulsed antigen presenting cells (TOVA-act), were injected into B16 OVA melanoma-bearing mice. The distribution of the 19F-labelled donor cells was determined in-vivo by 19F-MRI/MRS. In-vivo 19F-MRI/MRS results were confirmed by ex-vivo 19F-NMR and flow cytometry. Results SP, Tact, and TOVA-act were successfully PFC-labeled in-vitro yielding 3x1011-1.4x1012 19F-atoms/cell in the 3 groups. Adoptively transferred 19F-labeled SP, TOVA-act, and Tact were detected by coil-localized 19F-MRS in the chest, abdomen, and left flank in most animals (corresponding to lungs, livers, and spleens, respectively, with highest signal-to-noise for SP vs TOVA-act and Tact, p<0.009 for both). SP and Tact were successfully imaged by 19F-MRI (n = 3; liver). These in-vivo data were confirmed by ex-vivo high-resolution 19F-NMR-spectroscopy. By flow cytometric analysis, however, TOVA-act tended to be more abundant versus SP and Tact (liver: p = 0.1313; lungs: p = 0.1073; spleen: p = 0.109). Unlike 19F-MRI/MRS, flow cytometry also identified transferred immune cells (SP, Tact, and TOVA-act) in the tumors. Conclusion SP, Tact, and TOVA-act were successfully PFC-labeled in-vitro and detected in-vivo by non-invasive 19F-MRS/MRI in liver, lung, and spleen. The portion of 19F-labeled T cells in the adoptively transferred cell populations was insufficient for 19F-MRS/MRI detection in the tumor. While OVA-peptide-activated T cells (TOVA-act) showed highest infiltration into all organs, SP were detected more reliably by 19F-MRS/MRI, most likely explained by cell division of TOVA-act after injection, which dilutes the 19F content in the T cell-infiltrated organs. Non-dividing 19F-labeled cell species appear most promising to be tracked by 19F-MRS/MRI.


Magnetic Resonance in Medicine | 2017

Characterization of perfluorocarbon relaxation times and their influence on the optimization of fluorine-19 MRI at 3 tesla.

Roberto Colotti; Jessica Bastiaansen; Anne Wilson; Ulrich Flögel; Christine Gonzales; Juerg Schwitter; Matthias Stuber; Ruud B. van Heeswijk

To characterize and optimize 19F MRI for different perfluorocarbons (PFCs) at 3T and quantify the loss of acquisition efficiency as a function of different temperature and cellular conditions.


JACC: Basic to Translational Science | 2016

Cardiomyocyte Lineage Specification in Adult Human Cardiac Precursor Cells Via Modulation of Enhancer-Associated Long Noncoding RNA Expression

Isabelle Plaisance; Stéphanie Perruchoud; Miguel Fernandez-Tenorio; Christine Gonzales; Samir Ounzain; Patrick Ruchat; Mohamed Nemir; Ernst Niggli; Thierry Pedrazzini

Visual Abstract

Collaboration


Dive into the Christine Gonzales's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juerg Schwitter

University Hospital of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge