Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Grossen is active.

Publication


Featured researches published by Christine Grossen.


PLOS Biology | 2011

Ever-Young Sex Chromosomes in European Tree Frogs

Matthias Stöck; Agnès Horn; Christine Grossen; Dorothea Lindtke; Roberto Sermier; Caroline Betto-Colliard; Christophe Dufresnes; Emmanuel Bonjour; Zoé Dumas; Emilien Luquet; Tiziano Maddalena; Helena Clavero Sousa; Iñigo Martínez-Solano; Nicolas Perrin

Non-recombining sex chromosomes are expected to undergo evolutionary decay, ending up genetically degenerated, as has happened in birds and mammals. Why are then sex chromosomes so often homomorphic in cold-blooded vertebrates? One possible explanation is a high rate of turnover events, replacing master sex-determining genes by new ones on other chromosomes. An alternative is that X-Y similarity is maintained by occasional recombination events, occurring in sex-reversed XY females. Based on mitochondrial and nuclear gene sequences, we estimated the divergence times between European tree frogs (Hyla arborea, H. intermedia, and H. molleri) to the upper Miocene, about 5.4–7.1 million years ago. Sibship analyses of microsatellite polymorphisms revealed that all three species have the same pair of sex chromosomes, with complete absence of X-Y recombination in males. Despite this, sequences of sex-linked loci show no divergence between the X and Y chromosomes. In the phylogeny, the X and Y alleles cluster according to species, not in groups of gametologs. We conclude that sex-chromosome homomorphy in these tree frogs does not result from a recent turnover but is maintained over evolutionary timescales by occasional X-Y recombination. Seemingly young sex chromosomes may thus carry old-established sex-determining genes, a result at odds with the view that sex chromosomes necessarily decay until they are replaced. This raises intriguing perspectives regarding the evolutionary dynamics of sexually antagonistic genes and the mechanisms that control X-Y recombination.


Evolution | 2011

Temperature-dependent turnovers in sex-determination mechanisms: a quantitative model.

Christine Grossen; Samuel Neuenschwander; Nicolas Perrin

Sex determination is often seen as a dichotomous process: individual sex is assumed to be determined either by genetic (genotypic sex determination, GSD) or by environmental factors (environmental sex determination, ESD), most often temperature (temperature sex determination, TSD). We endorse an alternative view, which sees GSD and TSD as the ends of a continuum. Both effects interact a priori, because temperature can affect gene expression at any step along the sex‐determination cascade. We propose to define sex‐determination systems at the population‐ (rather than individual) level, via the proportion of variance in phenotypic sex stemming from genetic versus environmental factors, and we formalize this concept in a quantitative‐genetics framework. Sex is seen as a threshold trait underlain by a liability factor, and reaction norms allow modeling interactions between genotypic and temperature effects (seen as the necessary consequences of thermodynamic constraints on the underlying physiological processes). As this formalization shows, temperature changes (due to e.g., climatic changes or range expansions) are expected to provoke turnovers in sex‐ determination mechanisms, by inducing large‐scale sex reversal and thereby sex‐ratio selection for alternative sex‐determining genes. The frequency of turnovers and prevalence of homomorphic sex chromosomes in cold‐blooded vertebrates might thus directly relate to the temperature dependence in sex‐determination mechanisms.


Molecular Ecology | 2010

Effects of different mating scenarios on embryo viability in brown trout

Alain Jacob; Guillaume Evanno; Beat von Siebenthal; Christine Grossen; Claus Wedekind

Mating with attractive or dominant males is often predicted to offer indirect genetic benefits to females, but it is still largely unclear how important such non‐random mating can be with regard to embryo viability. We sampled a natural population of adult migratory brown trout (Salmo trutta), bred them in vitro in a half‐sib breeding design to separate genetic from maternal environmental effects, raised 2098 embryos singly until hatching, and exposed them experimentally to different levels of pathogen stress at a late embryonic stage. We found that the embryos’ tolerance to the induced pathogen stress was linked to the major histocompatibility complex (MHC) of their parents, i.e. certain MHC genotypes appeared to provide better protection against infection than others. We also found significant additive genetic variance for stress tolerance. Melanin‐based dark skin patterns revealed males with ‘good genes’, i.e. embryos fathered by dark coloured males had a high tolerance to infection. Mating with large and dominant males would, however, not improve embryo viability when compared to random mating. We used simulations to provide estimates of how mate choice based on MHC or melanin‐based skin patterns would influence embryos’ tolerance to the experimentally induced pathogen stress.


Evolution | 2013

SEX‐CHROMOSOME TURNOVERS INDUCED BY DELETERIOUS MUTATION LOAD

Olivier Blaser; Christine Grossen; Samuel Neuenschwander; Nicolas Perrin

In sharp contrast with mammals and birds, many cold‐blooded vertebrates present homomorphic sex chromosomes. Empirical evidence supports a role for frequent turnovers, which replace nonrecombining sex chromosomes before they have time to decay. Three main mechanisms have been proposed for such turnovers, relying either on neutral processes, sex‐ratio selection, or intrinsic benefits of the new sex‐determining genes (due, e.g., to linkage with sexually antagonistic mutations). Here, we suggest an additional mechanism, arising from the load of deleterious mutations that accumulate on nonrecombining sex chromosomes. In the absence of dosage compensation, this load should progressively lower survival rate in the heterogametic sex. Turnovers should occur when this cost outweighs the benefits gained from any sexually antagonistic genes carried by the nonrecombining sex chromosome. We use individual‐based simulations of a Mullers ratchet process to test this prediction, and investigate how the relevant parameters (effective population size, strength and dominance of deleterious mutations, size of nonrecombining segment, and strength of sexually antagonistic selection) are expected to affect the rate of turnovers.


PLOS Genetics | 2014

Introgression from Domestic Goat Generated Variation at the Major Histocompatibility Complex of Alpine Ibex

Christine Grossen; Lukas F. Keller; Iris Biebach; Daniel Croll

The major histocompatibility complex (MHC) is a crucial component of the vertebrate immune system and shows extremely high levels of genetic polymorphism. The extraordinary genetic variation is thought to be ancient polymorphisms maintained by balancing selection. However, introgression from related species was recently proposed as an additional mechanism. Here we provide evidence for introgression at the MHC in Alpine ibex (Capra ibex ibex). At a usually very polymorphic MHC exon involved in pathogen recognition (DRB exon 2), Alpine ibex carried only two alleles. We found that one of these DRB alleles is identical to a DRB allele of domestic goats (Capra aegagrus hircus). We sequenced 2489 bp of the coding and non-coding regions of the DRB gene and found that Alpine ibex homozygous for the goat-type DRB exon 2 allele showed nearly identical sequences (99.8%) to a breed of domestic goats. Using Sanger and RAD sequencing, microsatellite and SNP chip data, we show that the chromosomal region containing the goat-type DRB allele has a signature of recent introgression in Alpine ibex. A region of approximately 750 kb including the DRB locus showed high rates of heterozygosity in individuals carrying one copy of the goat-type DRB allele. These individuals shared SNP alleles both with domestic goats and other Alpine ibex. In a survey of four Alpine ibex populations, we found that the region surrounding the DRB allele shows strong linkage disequilibria, strong sequence clustering and low diversity among haplotypes carrying the goat-type allele. Introgression at the MHC is likely adaptive and introgression critically increased MHC DRB diversity in the genetically impoverished Alpine ibex. Our finding contradicts the long-standing view that genetic variability at the MHC is solely a consequence of ancient trans-species polymorphism. Introgression is likely an underappreciated source of genetic diversity at the MHC and other loci under balancing selection.


Molecular Ecology Resources | 2013

Development of SNP markers identifying European wildcats, domestic cats, and their admixed progeny

Beatrice Nussberger; Maja P. Greminger; Christine Grossen; Lukas F. Keller; Peter Wandeler

Introgression can be an important evolutionary force but it can also lead to species extinction and as such is a crucial issue for species conservation. However, introgression is difficult to detect, morphologically as well as genetically. Hybridization with domestic cats (Felis silvestris catus) is a major concern for the conservation of European wildcats (Felis s. silvestris). The available morphologic and genetic markers for the two Felis subspecies are not sufficient to reliably detect hybrids beyond first generation. Here we present a single nucleotide polymorphism (SNP) based approach that allows the identification of introgressed individuals. Using high‐throughput sequencing of reduced representation libraries we developed a diagnostic marker set containing 48 SNPs (Fst > 0.8) which allows the identification of wildcats, domestic cats, their hybrids and backcrosses. This allows assessing introgression rate in natural wildcat populations and is key for a better understanding of hybridization processes.


Evolution | 2012

The evolution of XY recombination: sexually antagonistic selection versus deleterious mutation load.

Christine Grossen; Samuel Neuenschwander; Nicolas Perrin

Recombination arrest between X and Y chromosomes, driven by sexually antagonistic genes, is expected to induce their progressive differentiation. However, in contrast to birds and mammals (which display the predicted pattern), most cold‐blooded vertebrates have homomorphic sex chromosomes. Two main hypotheses have been proposed to account for this, namely high turnover rates of sex‐determining systems and occasional XY recombination. Using individual‐based simulations, we formalize the evolution of XY recombination (here mediated by sex reversal; the “fountain‐of‐youth” model) under the contrasting forces of sexually antagonistic selection and deleterious mutations. The shift between the domains of elimination and accumulation occurs at much lower selection coefficients for the Y than for the X. In the absence of dosage compensation, mildly deleterious mutations accumulating on the Y depress male fitness, thereby providing incentives for XY recombination. Under our settings, this occurs via “demasculinization” of the Y, allowing recombination in XY (sex‐reversed) females. As we also show, this generates a conflict with the X, which coevolves to oppose sex reversal. The resulting rare events of XY sex reversal are enough to purge the Y from its load of deleterious mutations. Our results support the “fountain of youth” as a plausible mechanism to account for the maintenance of sex‐chromosome homomorphy.


The Auk | 2016

Genomic variation across the Yellow-rumped Warbler species complex

David P. L. Toews; Alan Brelsford; Christine Grossen; Borja Milá; Darren E. Irwin

ABSTRACT Populations that have experienced long periods of geographic isolation will diverge over time. The application of high-throughput sequencing technologies to study the genomes of related taxa now allows us to quantify, at a fine scale, the consequences of this divergence across the genome. Throughout a number of studies, a notable pattern has emerged. In many cases, estimates of differentiation across the genome are strongly heterogeneous; however, the evolutionary processes driving this striking pattern are still unclear. Here we quantified genomic variation across several groups within the Yellow-rumped Warbler species complex (Setophaga spp.), a group of North and Central American wood warblers. We showed that genomic variation is highly heterogeneous between some taxa and that these regions of high differentiation are relatively small compared to those in other study systems. We found that the clusters of highly differentiated markers between taxa occur in gene-rich regions of the genome and exhibit low within-population diversity. We suggest these patterns are consistent with selection, shaping genomic divergence in similar genomic regions across the different populations. Our study also confirms previous results relying on fewer genetic markers that several of the phenotypically distinct groups in the system are also genomically highly differentiated, likely to the point of full species status.


Molecular Ecology | 2016

Strong reproductive isolation and narrow genomic tracts of differentiation among three woodpecker species in secondary contact.

Christine Grossen; Sampath S. Seneviratne; Daniel Croll; Darren E. Irwin

Hybrid zones allow the measurement of gene flow across the genome, producing insight into the genomic architecture of speciation. Such analysis is particularly powerful when applied to multiple pairs of hybridizing species, as patterns of genomic differentiation can then be related to age of the hybridizing species, providing a view into the build‐up of differentiation over time. We examined 33 809 single nucleotide polymorphisms (SNPs) in three hybridizing woodpecker species: Red‐breasted, Red‐naped and Yellow‐bellied sapsuckers (Sphyrapicus ruber, Sphyrapicus nuchalis and Sphyrapicus varius), two of which (ruber and nuchalis) are much more closely related than each is to the third (varius). To identify positions of SNPs on chromosomes, we developed a localization method based on comparative genomics. We found narrow clines, bimodal distributions of hybrid indices and genomic regions with decreased rates of introgression. These results suggest moderately strong reproductive isolation among species and selection against specific hybrid genotypes. We found 19 small regions of strong differentiation between species, partly shared among species pairs, but no large regions of differentiation. An association analysis revealed a single strong‐effect candidate locus associated with plumage, possibly explaining mismatch among the three species in genomic relatedness and plumage similarity. Our comparative analysis of species pairs of different age and their hybrid zones showed that moderately strong reproductive isolation can occur with little genomic differentiation, but that reproductive isolation is incomplete even with much greater genomic differentiation, implying there are long periods of time when hybridization is possible if diverging populations are in geographic contact.


Journal of Animal Breeding and Genetics | 2017

Microsatellite diversity of the Nordic type of goats in relation to breed conservation: how relevant is pure ancestry?

Johannes A. Lenstra; J Tigchelaar; Iris Biebach; J H Hallsson; Juha Kantanen; Vivi Hunnicke Nielsen; François Pompanon; Saeid Naderi; Hamid-Reza Rezaei; N Saether; O. Ertugrul; Christine Grossen; Glauco Camenisch; M Vos-Loohuis; M van Straten; E A de Poel; J.J. Windig; K. Oldenbroek

In the last decades, several endangered breeds of livestock species have been re-established effectively. However, the successful revival of the Dutch and Danish Landrace goats involved crossing with exotic breeds and the ancestry of the current populations is therefore not clear. We have generated genotypes for 27 FAO-recommended microsatellites of these landraces and three phenotypically similar Nordic-type landraces and compared these breeds with central European, Mediterranean and south-west Asian goats. We found decreasing levels of genetic diversity with increasing distance from the south-west Asian domestication site with a south-east-to-north-west cline that is clearly steeper than the Mediterranean east-to-west cline. In terms of genetic diversity, the Dutch Landrace comes next to the isolated Icelandic breed, which has an extremely low diversity. The Norwegian coastal goat and the Finnish and Icelandic landraces are clearly related. It appears that by a combination of mixed origin and a population bottleneck, the Dutch and Danish Land-races are separated from the other breeds. However, the current Dutch and Danish populations with the multicoloured and long-horned appearance effectively substitute for the original breed, illustrating that for conservation of cultural heritage, the phenotype of a breed is more relevant than pure ancestry and the genetic diversity of the original breed. More in general, we propose that for conservation, the retention of genetic diversity of an original breed and of the visual phenotype by which the breed is recognized and defined needs to be considered separately.

Collaboration


Dive into the Christine Grossen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel Neuenschwander

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darren E. Irwin

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Alan Brelsford

University of California

View shared research outputs
Top Co-Authors

Avatar

Agnès Horn

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge